Suppr超能文献

持续表达靶向毒性 RNA 的 Cas9 可逆转肌强直性营养不良 1 型小鼠模型的疾病表型。

The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1.

机构信息

Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.

Stem Cell Program, University of California San Diego, La Jolla, CA, USA.

出版信息

Nat Biomed Eng. 2021 Feb;5(2):157-168. doi: 10.1038/s41551-020-00607-7. Epub 2020 Sep 14.

Abstract

Myotonic dystrophy type I (DM1) is a multisystemic autosomal-dominant inherited human disorder that is caused by CTG microsatellite repeat expansions (MREs) in the 3' untranslated region of DMPK. Toxic RNAs expressed from such repetitive sequences can be eliminated using CRISPR-mediated RNA targeting, yet evidence of its in vivo efficacy and durability is lacking. Here, using adult and neonatal mouse models of DM1, we show that intramuscular or systemic injections of adeno-associated virus (AAV) vectors encoding nuclease-dead Cas9 and a single-guide RNA targeting CUG repeats results in the expression of the RNA-targeting Cas9 for up to three months, redistribution of the RNA-splicing protein muscleblind-like splicing regulator 1, elimination of foci of toxic RNA, reversal of splicing biomarkers and amelioration of myotonia. The sustained reversal of DM1 phenotypes provides further support that RNA-targeting Cas9 is a viable strategy for treating DM1 and other MRE-associated diseases.

摘要

Ⅰ型肌强直性营养不良(DM1)是一种多系统常染色体显性遗传的人类疾病,由 DMPK 3'非翻译区的 CTG 微卫星重复扩展(MREs)引起。可以使用 CRISPR 介导的 RNA 靶向来消除来自这种重复序列的毒性 RNA,但缺乏其体内疗效和持久性的证据。在这里,我们使用 DM1 的成年和新生小鼠模型表明,肌内或系统注射编码核酸酶失活 Cas9 和靶向 CUG 重复的单链引导 RNA 的腺相关病毒(AAV)载体可使 RNA 靶向 Cas9 的表达长达三个月,RNA 剪接蛋白肌肉盲样剪接调节剂 1 的重新分布,消除毒性 RNA 的焦点,逆转剪接生物标志物,并改善肌强直。DM1 表型的持续逆转进一步支持 RNA 靶向 Cas9 是治疗 DM1 和其他 MRE 相关疾病的可行策略。

相似文献

1
The sustained expression of Cas9 targeting toxic RNAs reverses disease phenotypes in mouse models of myotonic dystrophy type 1.
Nat Biomed Eng. 2021 Feb;5(2):157-168. doi: 10.1038/s41551-020-00607-7. Epub 2020 Sep 14.
2
Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice.
Mol Ther. 2019 Aug 7;27(8):1372-1388. doi: 10.1016/j.ymthe.2019.05.021. Epub 2019 Jun 5.
3
Application of CRISPR-Cas9-Mediated Genome Editing for the Treatment of Myotonic Dystrophy Type 1.
Mol Ther. 2020 Dec 2;28(12):2527-2539. doi: 10.1016/j.ymthe.2020.10.005. Epub 2020 Oct 14.
6
Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9.
Mol Ther. 2018 Nov 7;26(11):2617-2630. doi: 10.1016/j.ymthe.2018.09.003. Epub 2018 Sep 11.
7
CRISPR/Cas Applications in Myotonic Dystrophy: Expanding Opportunities.
Int J Mol Sci. 2019 Jul 27;20(15):3689. doi: 10.3390/ijms20153689.
8
Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy.
Hum Mol Genet. 2015 Sep 1;24(17):4971-83. doi: 10.1093/hmg/ddv219. Epub 2015 Jun 16.
9
Impeding Transcription of Expanded Microsatellite Repeats by Deactivated Cas9.
Mol Cell. 2017 Nov 2;68(3):479-490.e5. doi: 10.1016/j.molcel.2017.09.033. Epub 2017 Oct 19.
10
Age of onset of RNA toxicity influences phenotypic severity: evidence from an inducible mouse model of myotonic dystrophy (DM1).
PLoS One. 2013 Sep 5;8(9):e72907. doi: 10.1371/journal.pone.0072907. eCollection 2013.

引用本文的文献

1
Muscular Dystrophies.
Adv Exp Med Biol. 2025;1478:245-284. doi: 10.1007/978-3-031-88361-3_11.
2
Molecular genetics of myotonic dystrophy and the evolution of therapeutic approaches.
J Hum Genet. 2025 Jul 3. doi: 10.1038/s10038-025-01358-6.
3
Multisystem Symptoms in Myotonic Dystrophy Type 1: A Management and Therapeutic Perspective.
Int J Mol Sci. 2025 Jun 2;26(11):5350. doi: 10.3390/ijms26115350.
5
Myotonic dystrophies: an update on clinical features, molecular mechanisms, management, and gene therapy.
Neurol Sci. 2025 Apr;46(4):1599-1616. doi: 10.1007/s10072-024-07826-9. Epub 2024 Dec 7.
6
Dominantly inherited muscle disorders: understanding their complexity and exploring therapeutic approaches.
Dis Model Mech. 2024 Oct 1;17(10). doi: 10.1242/dmm.050720. Epub 2024 Nov 6.
7
Therapeutic targeting of RNA for neurological and neuromuscular disease.
Genes Dev. 2024 Sep 19;38(15-16):698-717. doi: 10.1101/gad.351612.124.
8
Immortalized human myotonic dystrophy type 1 muscle cell lines to address patient heterogeneity.
iScience. 2024 May 7;27(6):109930. doi: 10.1016/j.isci.2024.109930. eCollection 2024 Jun 21.
9
Advances on the Mechanisms and Therapeutic Strategies in Non-coding CGG Repeat Expansion Diseases.
Mol Neurobiol. 2024 Dec;61(12):10722-10735. doi: 10.1007/s12035-024-04239-9. Epub 2024 May 23.

本文引用的文献

1
Loss of MBNL1 induces RNA misprocessing in the thymus and peripheral blood.
Nat Commun. 2020 Apr 24;11(1):2022. doi: 10.1038/s41467-020-15962-x.
2
Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS.
Nat Med. 2020 Jan;26(1):118-130. doi: 10.1038/s41591-019-0674-1. Epub 2019 Dec 23.
3
Genome Editing of Expanded CTG Repeats within the Human DMPK Gene Reduces Nuclear RNA Foci in the Muscle of DM1 Mice.
Mol Ther. 2019 Aug 7;27(8):1372-1388. doi: 10.1016/j.ymthe.2019.05.021. Epub 2019 Jun 5.
4
Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes.
Nat Commun. 2019 Apr 23;10(1):1842. doi: 10.1038/s41467-019-09693-x.
5
Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy.
Nat Med. 2019 Mar;25(3):427-432. doi: 10.1038/s41591-019-0344-3. Epub 2019 Feb 18.
6
A large multicenter study of pediatric myotonic dystrophy type 1 for evidence-based management.
Neurology. 2019 Feb 19;92(8):e852-e865. doi: 10.1212/WNL.0000000000006948. Epub 2019 Jan 18.
7
Therapeutic Genome Editing for Myotonic Dystrophy Type 1 Using CRISPR/Cas9.
Mol Ther. 2018 Nov 7;26(11):2617-2630. doi: 10.1016/j.ymthe.2018.09.003. Epub 2018 Sep 11.
9
Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice.
Nucleic Acids Res. 2018 Jun 20;46(11):5366-5380. doi: 10.1093/nar/gky397.
10
Myotonic Dystrophy and Developmental Regulation of RNA Processing.
Compr Physiol. 2018 Mar 25;8(2):509-553. doi: 10.1002/cphy.c170002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验