Suppr超能文献

飞机声音事件的实时识别。

Real-time identification of aircraft sound events.

作者信息

Giladi Ran

机构信息

School of Electrical and Computer Engineering, Ben-Gurion University, Israel.

出版信息

Transp Res D Transp Environ. 2020 Oct;87:102527. doi: 10.1016/j.trd.2020.102527. Epub 2020 Sep 10.

Abstract

Metropolitan airports constitute an environmental nuisance, mainly due to noise pollution originating from aircraft landings and takeoffs, affecting the wellbeing of the airports' neighboring populations. Noise measurement is considered the fundamental means to evaluate, enforce, validate, and control noise abatement. Noise measurements performed by sound monitors located close to urban airports are often disrupted by urban background noise that interferes with aircraft sounds. Detecting aircraft noise, classifying, identifying, and separating it from the residual background noise is a challenge for unattended aircraft noise monitors. This paper suggests a simple and inexpensive methodology, based on ADS-B (Automatic Dependent Surveillance-Broadcast), which can facilitate isolating aircraft noise from background noise. Experiments showed that using ADS-B driven noise monitors is at least as accurate as the commonly used radar-driven noise monitors, in terms of true positive, false positive, or false negative detection during the examined periods.

摘要

大城市的机场对环境造成了滋扰,主要是由于飞机起降产生的噪音污染,影响了机场周边居民的生活质量。噪声测量被认为是评估、执行、验证和控制噪声消减的基本手段。位于城市机场附近的声音监测器所进行的噪声测量常常会受到干扰飞机声音的城市背景噪声的影响。对于无人值守的飞机噪声监测器来说,检测飞机噪声、对其进行分类、识别并将其与残留的背景噪声分离是一项挑战。本文提出了一种基于自动相关监视广播(ADS-B)的简单且低成本的方法,该方法有助于将飞机噪声与背景噪声隔离开来。实验表明,在所考察的时间段内,就真阳性、假阳性或假阴性检测而言,使用基于ADS-B的噪声监测器至少与常用的基于雷达的噪声监测器一样准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e204/7481859/c3e087951b1e/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验