Suppr超能文献

一种用于中风后步态功能评估的新型多线索观察临床量表——中风活动评分(SMS)。

A Novel Multiple-Cue Observational Clinical Scale for Functional Evaluation of Gait After Stroke - The Stroke Mobility Score (SMS).

作者信息

Raab Dominik, Diószeghy-Léránt Brigitta, Wünnemann Meret, Zumfelde Christina, Cramer Elena, Rühlemann Alina, Wagener Johanna, Gegenbauer Silke, Geu Flores Francisco, Jäger Marcus, Zietz Dörte, Hefter Harald, Kecskemethy Andres, Siebler Mario

机构信息

Chair of Mechanics and Robotics, University of Duisburg-Essen, Duisburg, Germany.

Neurology Rehabilitation Unit, MediClin Fachklinik Rhein/Ruhr, Essen, Germany.

出版信息

Med Sci Monit. 2020 Sep 15;26:e923147. doi: 10.12659/MSM.923147.

Abstract

BACKGROUND For future development of machine learning tools for gait impairment assessment after stroke, simple observational whole-body clinical scales are required. Current observational scales regard either only leg movement or discrete overall parameters, neglecting dysfunctions in the trunk and arms. The purpose of this study was to introduce a new multiple-cue observational scale, called the stroke mobility score (SMS). MATERIAL AND METHODS In a group of 131 patients, we developed a 1-page manual involving 6 subscores by Delphi method using the video-based SMS: trunk posture, leg movement of the most affected side, arm movement of the most affected side, walking speed, gait fluency and stability/risk of falling. Six medical raters then validated the SMS on a sample of 60 additional stroke patients. Conventional scales (NIHSS, Timed-Up-And-Go-Test, 10-Meter-Walk-Test, Berg Balance Scale, FIM-Item L, Barthel Index) were also applied. RESULTS (1) High consistency and excellent inter-rater reliability of the SMS were verified (Cronbach's alpha >0.9). (2) The SMS subscores are non-redundant and reveal much more nuanced whole-body dysfunction details than conventional scores, although evident correlations as e.g. between 10-Meter-Walk-Test and subscore "gait speed" are verified. (3) The analysis of cross-correlations between SMS subscores unveils new functional interrelationships for stroke profiling. CONCLUSIONS The SMS proves to be an easy-to-use, tele-applicable, robust, consistent, reliable, and nuanced functional scale of gait impairments after stroke. Due to its sensitivity to whole-body motion criteria, it is ideally suited for machine learning algorithms and for development of new therapy strategies based on instrumented gait analysis.

摘要

背景 为了未来开发用于评估中风后步态障碍的机器学习工具,需要简单的观察性全身临床量表。当前的观察性量表要么只关注腿部运动,要么关注离散的整体参数,而忽略了躯干和手臂的功能障碍。本研究的目的是引入一种新的多线索观察性量表,称为中风运动评分(SMS)。

材料与方法 在一组131名患者中,我们通过德尔菲法,基于视频的SMS开发了一份包含6个分项评分的1页手册:躯干姿势、最受影响侧的腿部运动、最受影响侧的手臂运动、步行速度、步态流畅性以及跌倒稳定性/风险。然后,6名医学评估者在另外60名中风患者的样本上对SMS进行了验证。还应用了传统量表(美国国立卫生研究院卒中量表、起立行走测试、10米步行测试、伯格平衡量表、功能独立性测量-项目L、巴氏指数)。

结果 (1)验证了SMS具有高度一致性和出色的评分者间信度(克朗巴哈系数>0.9)。(2)SMS分项评分并非冗余,与传统评分相比,揭示了更细微的全身功能障碍细节,尽管验证了如10米步行测试与分项评分“步态速度”之间存在明显相关性。(3)对SMS分项评分之间的交叉相关性分析揭示了中风特征分析的新功能相互关系。

结论 SMS被证明是一种易于使用、可远程应用、稳健、一致、可靠且细致入微的中风后步态障碍功能量表。由于其对全身运动标准的敏感性,它非常适合机器学习算法以及基于仪器化步态分析的新治疗策略的开发。

相似文献

2
Post-stroke Visual Gait Measure for Developing Countries: A Reliability and Validity Study.
Neurol India. 2019 Jul-Aug;67(4):1033-1040. doi: 10.4103/0028-3886.266273.
4
Mobility Disorders in Stroke, Parkinson Disease, and Multiple Sclerosis: A Multicenter Cross-Sectional Study.
Am J Phys Med Rehabil. 2020 Jan;99(1):41-47. doi: 10.1097/PHM.0000000000001272.
5
Construct validity of the Wisconsin Gait Scale in acute, subacute and chronic stroke.
Gait Posture. 2019 Feb;68:363-368. doi: 10.1016/j.gaitpost.2018.12.020. Epub 2018 Dec 18.
6
Relationship Between Observational Wisconsin Gait Scale, Gait Deviation Index, and Gait Variability Index in Individuals Poststroke.
Arch Phys Med Rehabil. 2019 Sep;100(9):1680-1687. doi: 10.1016/j.apmr.2018.12.031. Epub 2019 Jan 26.
7
Relationship between gait profile score and clinical assessments of gait in post-stroke patients.
J Rehabil Med. 2021 May 18;53(5):jrm00192. doi: 10.2340/16501977-2809.
8
Clinical utility of the modified trunk impairment scale for stroke survivors.
Disabil Rehabil. 2018 May;40(10):1200-1205. doi: 10.1080/09638288.2017.1282990. Epub 2017 Feb 7.
9
Reliability and validity of step test scores in subjects with chronic stroke.
Arch Phys Med Rehabil. 2012 Jun;93(6):1065-71. doi: 10.1016/j.apmr.2011.12.022. Epub 2012 Apr 3.

引用本文的文献

1
AN INTELLIGIBLE AI-DRIVEN DECISION SUPPORT SYSTEM FOR POSTSTROKE MOBILITY ASSESSMENT.
J Rehabil Med Clin Commun. 2025 Jul 20;8:42379. doi: 10.2340/jrm-cc.v8.42379. eCollection 2025.
2
Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition.
Front Neurorobot. 2023 Jul 3;17:1186175. doi: 10.3389/fnbot.2023.1186175. eCollection 2023.
3
[Clinical value of instrumental gait analysis].
Orthopadie (Heidelb). 2023 Jul;52(7):567-574. doi: 10.1007/s00132-023-04397-z. Epub 2023 Jun 7.

本文引用的文献

1
2
Applications of deep learning for the analysis of medical data.
Arch Pharm Res. 2019 Jun;42(6):492-504. doi: 10.1007/s12272-019-01162-9. Epub 2019 May 28.
3
[Big data and deep learning in preventive and rehabilitation medicine].
Orthopade. 2018 Oct;47(10):826-833. doi: 10.1007/s00132-018-3603-y.
4
Tools for assessing fall risk in the elderly: a systematic review and meta-analysis.
Aging Clin Exp Res. 2018 Jan;30(1):1-16. doi: 10.1007/s40520-017-0749-0. Epub 2017 Apr 3.
5
Improvement of upper trunk posture during walking in hemiplegic patients after injections of botulinum toxin into the arm.
Clin Biomech (Bristol). 2017 Mar;43:15-22. doi: 10.1016/j.clinbiomech.2017.01.018. Epub 2017 Jan 26.
6
Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association.
Circulation. 2017 Mar 7;135(10):e146-e603. doi: 10.1161/CIR.0000000000000485. Epub 2017 Jan 25.
9
ACTIVLIM-Stroke: a crosscultural Rasch-built scale of activity limitations in patients with stroke.
Stroke. 2012 Mar;43(3):815-23. doi: 10.1161/STROKEAHA.111.638965. Epub 2012 Jan 5.
10
Rehabilitation of gait after stroke: a review towards a top-down approach.
J Neuroeng Rehabil. 2011 Dec 13;8:66. doi: 10.1186/1743-0003-8-66.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验