Raab Dominik, Diószeghy-Léránt Brigitta, Wünnemann Meret, Zumfelde Christina, Cramer Elena, Rühlemann Alina, Wagener Johanna, Gegenbauer Silke, Geu Flores Francisco, Jäger Marcus, Zietz Dörte, Hefter Harald, Kecskemethy Andres, Siebler Mario
Chair of Mechanics and Robotics, University of Duisburg-Essen, Duisburg, Germany.
Neurology Rehabilitation Unit, MediClin Fachklinik Rhein/Ruhr, Essen, Germany.
Med Sci Monit. 2020 Sep 15;26:e923147. doi: 10.12659/MSM.923147.
BACKGROUND For future development of machine learning tools for gait impairment assessment after stroke, simple observational whole-body clinical scales are required. Current observational scales regard either only leg movement or discrete overall parameters, neglecting dysfunctions in the trunk and arms. The purpose of this study was to introduce a new multiple-cue observational scale, called the stroke mobility score (SMS). MATERIAL AND METHODS In a group of 131 patients, we developed a 1-page manual involving 6 subscores by Delphi method using the video-based SMS: trunk posture, leg movement of the most affected side, arm movement of the most affected side, walking speed, gait fluency and stability/risk of falling. Six medical raters then validated the SMS on a sample of 60 additional stroke patients. Conventional scales (NIHSS, Timed-Up-And-Go-Test, 10-Meter-Walk-Test, Berg Balance Scale, FIM-Item L, Barthel Index) were also applied. RESULTS (1) High consistency and excellent inter-rater reliability of the SMS were verified (Cronbach's alpha >0.9). (2) The SMS subscores are non-redundant and reveal much more nuanced whole-body dysfunction details than conventional scores, although evident correlations as e.g. between 10-Meter-Walk-Test and subscore "gait speed" are verified. (3) The analysis of cross-correlations between SMS subscores unveils new functional interrelationships for stroke profiling. CONCLUSIONS The SMS proves to be an easy-to-use, tele-applicable, robust, consistent, reliable, and nuanced functional scale of gait impairments after stroke. Due to its sensitivity to whole-body motion criteria, it is ideally suited for machine learning algorithms and for development of new therapy strategies based on instrumented gait analysis.
背景 为了未来开发用于评估中风后步态障碍的机器学习工具,需要简单的观察性全身临床量表。当前的观察性量表要么只关注腿部运动,要么关注离散的整体参数,而忽略了躯干和手臂的功能障碍。本研究的目的是引入一种新的多线索观察性量表,称为中风运动评分(SMS)。
材料与方法 在一组131名患者中,我们通过德尔菲法,基于视频的SMS开发了一份包含6个分项评分的1页手册:躯干姿势、最受影响侧的腿部运动、最受影响侧的手臂运动、步行速度、步态流畅性以及跌倒稳定性/风险。然后,6名医学评估者在另外60名中风患者的样本上对SMS进行了验证。还应用了传统量表(美国国立卫生研究院卒中量表、起立行走测试、10米步行测试、伯格平衡量表、功能独立性测量-项目L、巴氏指数)。
结果 (1)验证了SMS具有高度一致性和出色的评分者间信度(克朗巴哈系数>0.9)。(2)SMS分项评分并非冗余,与传统评分相比,揭示了更细微的全身功能障碍细节,尽管验证了如10米步行测试与分项评分“步态速度”之间存在明显相关性。(3)对SMS分项评分之间的交叉相关性分析揭示了中风特征分析的新功能相互关系。
结论 SMS被证明是一种易于使用、可远程应用、稳健、一致、可靠且细致入微的中风后步态障碍功能量表。由于其对全身运动标准的敏感性,它非常适合机器学习算法以及基于仪器化步态分析的新治疗策略的开发。