Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand; Institute of Marine Science, Leigh Marine Laboratory, University of Auckland, P.O. Box 349, Warkworth 0941, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
Comp Biochem Physiol A Mol Integr Physiol. 2020 Dec;250:110806. doi: 10.1016/j.cbpa.2020.110806. Epub 2020 Sep 12.
Seawater temperature is projected to increase globally due to climate change, affecting physiological responses, fitness and survival of marine organisms. Thermal tolerance studies are critical to determine the ability of animals to adapt to future environmental conditions. In this study, we aimed to determine if the thermal limits of the New Zealand Evechinus chloroticus would shift with animal's thermal history. We tested the effect of six thermal regimes on the righting ability, temperature of loss of righting (T), median lethal temperature (LT), lethal temperature (LT) and the gene expression of the heat shock protein 70 (hsp70) of the New Zealand sea urchin E. chloroticus when exposed to a thermal shock of 1 °C day (duration of 7-16 days depending on the treatment). Treatments consisted of laboratory acclimation for one and four weeks to 18 °C and 24 °C (mean winter (15 °C) and summer temperature (21 °C) + 3 °C of warming, respectively), compared to non-acclimated sea urchins collected during winter (14.6 °C) and summer seasons (20.4 °C). Thermal history did not have a significant effect on the righting ability of E. chloroticus (T ranged between 28 and 29 °C for all treatments) and LT (ranged between 29 and 30 °C for all treatments). However, LT of E. chloroticus collected during winter season was significantly lower than animals acclimated for one week at 18 °C. Maximum expression of hsp70 mRNA (T) was observed at around 27-28 °C regardless of treatment; however, relative hsp70 mRNA levels were significantly higher in animals acclimated for four weeks at 24 °C. Despite proving to be a thermotolerant species with LTs around 30 °C, E. chloroticus was unable to increase thermal tolerance and T when acclimated to high temperatures, suggesting that E. chloroticus may have a limited adaptive capacity to modify its phenotype; however, evolutionary adaptations may allow E. chloroticus to adapt to future ocean temperatures.
由于气候变化,海水温度预计将在全球范围内升高,这影响了海洋生物的生理反应、适应性和生存能力。热耐受性研究对于确定动物适应未来环境条件的能力至关重要。在这项研究中,我们旨在确定新西兰石笔海胆的热极限是否会随着动物的热历史而改变。我们测试了六种热环境对新西兰石笔海胆翻正能力、失去翻正能力的温度(T)、中位致死温度(LT)、致死温度(LT)以及热休克蛋白 70(hsp70)基因表达的影响,当暴露于 1°C 的热冲击时,为期 7-16 天(具体取决于处理)。处理包括在 18°C 和 24°C 下实验室适应 1 周和 4 周(分别为冬季(15°C)和夏季(21°C)平均温度+ 3°C 变暖),与冬季(14.6°C)和夏季(20.4°C)期间收集的非适应海胆相比。热历史对新西兰石笔海胆的翻正能力(T 为所有处理的 28-29°C)和 LT(所有处理的 29-30°C)没有显著影响。然而,冬季收集的新西兰石笔海胆的 LT 明显低于在 18°C 下适应 1 周的动物。hsp70 mRNA 的最大表达(T)无论处理如何,都在 27-28°C 左右观察到;然而,在 24°C 下适应四周的动物中,相对 hsp70 mRNA 水平显著升高。尽管新西兰石笔海胆是一种具有 30°C 左右 LT 的耐热物种,但当适应高温时,它无法提高热耐受性和 T,这表明新西兰石笔海胆可能对改变其表型的适应能力有限;然而,进化适应可能使新西兰石笔海胆能够适应未来的海洋温度。