Suppr超能文献

患有脑小血管疾病和运动风险因素的老年人基底神经节内的静息态连接性与步速

Resting state connectivity within the basal ganglia and gait speed in older adults with cerebral small vessel disease and locomotor risk factors.

作者信息

Karim H T, Rosso A, Aizenstein H J, Bohnen N I, Studenski S, Rosano C

机构信息

Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States.

Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Neuroimage Clin. 2020;28:102401. doi: 10.1016/j.nicl.2020.102401. Epub 2020 Aug 28.

Abstract

BACKGROUND AND AIM

The basal ganglia are critical for planned locomotion, but their role in age-related gait slowing is not well known. Spontaneous regional co-activation of brain activity at rest, known as resting state connectivity, is emerging as a biomarker of functional neural specialization of varying human processes, including gait. We hypothesized that greater connectivity amongst regions of the basal ganglia would be associated with faster gait speed in the elderly. We further investigated whether this association was similar in strength to that of other risk factors for gait slowing, specifically white matter hyperintensities (WMH).

METHODS

A cohort of 269 adults (79-90 years, 146 females, 164 White) were assessed for gait speed (m/sec) via stopwatch; brain activation during resting state functional magnetic resonance imaging, WMH, and gray matter volume (GMV) normalized by intracranial volume via 3T neuroimaging; and risk factors of poorer locomotion via clinical exams (body mass index (BMI), muscle strength, vision, musculoskeletal pain, cardiometabolic conditions, depressive symptoms, and cognitive function). To understand whether basal ganglia connectivity shows distinct clusters of connectivity, we conducted a k-means clustering analysis of regional co-activation among the substantia nigra, nucleus accumbens, subthalamic nucleus, putamen, pallidum, and caudate. We conducted two multivariable linear regression models: (1) with gait speed as the dependent variable and connectivity, demographics, WMH, GMV, and locomotor risk factors as independent variables and (2) with basal ganglia connectivity as the dependent variable and demographics, WMH, GMV, and locomotor risk factors as independent variables.

RESULTS

We identified two clusters of basal ganglia connectivity: high and low without a distinct spatial distribution allowing us to compute an average connectivity index of the entire basal ganglia regional connectivity (representing a continuous measure). Lower connectivity was associated with slower gait, independent of other locomotor risk factors, including WMH; the coefficient of this association was similar to those of other locomotor risk factors. Lower connectivity was significantly associated with lower BMI and greater WMH.

CONCLUSIONS

Lower resting state basal ganglia connectivity is associated with slower gait speed. Its contribution appears comparable to WMH and other locomotor risk factors. Future studies should assess whether promoting higher basal ganglia connectivity in older adults may reduce age-related gait slowing.

摘要

背景与目的

基底神经节对有计划的运动至关重要,但其在与年龄相关的步态减慢中的作用尚不清楚。静息状态下大脑活动的自发区域共同激活,即静息态连接性,正逐渐成为包括步态在内的各种人类过程功能性神经特化的生物标志物。我们假设基底神经节区域之间更强的连接性与老年人更快的步态速度相关。我们进一步研究这种关联在强度上是否与步态减慢的其他风险因素(特别是白质高信号(WMH))相似。

方法

对269名成年人(79 - 90岁,146名女性,164名白人)进行评估,通过秒表测量步态速度(米/秒);通过3T神经成像技术在静息态功能磁共振成像期间测量大脑激活、WMH以及经颅内体积标准化的灰质体积(GMV);并通过临床检查(体重指数(BMI)、肌肉力量、视力、肌肉骨骼疼痛、心脏代谢状况、抑郁症状和认知功能)评估运动能力较差的风险因素。为了解基底神经节连接性是否显示出不同的连接簇,我们对黑质、伏隔核、丘脑底核、壳核、苍白球和尾状核之间的区域共同激活进行了k均值聚类分析。我们进行了两个多变量线性回归模型:(1)以步态速度为因变量,连接性、人口统计学特征、WMH、GMV和运动风险因素为自变量;(2)以基底神经节连接性为因变量,人口统计学特征、WMH、GMV和运动风险因素为自变量。

结果

我们识别出基底神经节连接性的两个簇:高连接性和低连接性,且没有明显的空间分布,这使我们能够计算整个基底神经节区域连接性的平均连接指数(代表一种连续测量)。较低的连接性与较慢的步态相关,独立于其他运动风险因素,包括WMH;这种关联的系数与其他运动风险因素的系数相似。较低的连接性与较低的BMI和较高的WMH显著相关。

结论

较低的静息态基底神经节连接性与较慢的步态速度相关。其作用似乎与WMH和其他运动风险因素相当。未来的研究应评估促进老年人更高的基底神经节连接性是否可以减少与年龄相关的步态减慢。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/684e/7495101/34c2eaa8ab26/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验