Suppr超能文献

热化学流体在裂缝多孔介质中的质量和热量传递。

Mass and Heat Transfer of Thermochemical Fluids in a Fractured Porous Medium.

机构信息

College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Academic Belt Road, Dhahran 31261, Saudi Arabia.

出版信息

Molecules. 2020 Sep 12;25(18):4179. doi: 10.3390/molecules25184179.

Abstract

The desire to improve hydraulic fracture complexity has encouraged the use of thermochemical additives with fracturing fluids. These chemicals generate tremendous heat and pressure pulses upon reaction. This study developed a model of thermochemical fluids' advection-reactive transport in hydraulic fractures to better understand thermochemical fluids' penetration length and heat propagation distance along the fracture and into the surrounding porous media. These results will help optimize the design of this type of treatment. The model consists of an integrated wellbore, fracture, and reservoir mass and heat transfer models. The wellbore model estimated the fracture fluid temperature at the subsurface injection interval. The integrated model showed that in most cases the thermochemical fluids were consumed within a short distance from the wellbore. However, the heat of reaction propagated a much deeper distance along the hydraulic fracture. In most scenarios, the thermochemical fluids were consumed within 15 ft from the fracture inlet. Among other design parameters, the thermochemical fluid concentration is the most significant in controlling the penetration length, temperature, and pressure response. The model showed that a temperature increase from 280 to 600 °F is possible by increasing the thermochemical concentration. Additionally, acid can be used to trigger the reaction but results in a shorter penetration length and higher temperature response.

摘要

提高水力裂缝复杂性的愿望促使人们在压裂液中使用热化学添加剂。这些化学物质在反应时会产生巨大的热和压力脉冲。本研究开发了一种热化学流体在水力裂缝中对流-反应传输的模型,以更好地了解热化学流体在裂缝和周围多孔介质中的穿透长度和热传播距离。这些结果将有助于优化此类处理的设计。该模型由集成井筒、裂缝和储层质量和传热模型组成。井筒模型估算了地下注入段的裂缝流体温度。综合模型表明,在大多数情况下,热化学流体在距离井筒很短的距离内被消耗。然而,反应热沿着水力裂缝传播了更深的距离。在大多数情况下,热化学流体在裂缝入口 15 英尺内被消耗。在其他设计参数中,热化学流体浓度是控制穿透长度、温度和压力响应的最重要因素。该模型表明,通过增加热化学浓度可以将温度从 280 提高到 600°F。此外,酸可以用来引发反应,但会导致穿透长度更短和温度响应更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6574/7570965/2b8cce667697/molecules-25-04179-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验