Suppr超能文献

机器学习预测严重硬皮病患者干细胞移植反应。

Machine learning predicts stem cell transplant response in severe scleroderma.

机构信息

Molecular and Systems Biology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA.

Biomedical Data Science, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA.

出版信息

Ann Rheum Dis. 2020 Dec;79(12):1608-1615. doi: 10.1136/annrheumdis-2020-217033. Epub 2020 Sep 15.

Abstract

OBJECTIVE

The Scleroderma: Cyclophosphamide or Transplantation (SCOT) trial demonstrated clinical benefit of haematopoietic stem cell transplant (HSCT) compared with cyclophosphamide (CYC). We mapped PBC (peripheral blood cell) samples from the SCOT clinical trial to scleroderma intrinsic subsets and tested the hypothesis that they predict long-term response to HSCT.

METHODS

We analysed gene expression from PBCs of SCOT participants to identify differential treatment response. PBC gene expression data were generated from 63 SCOT participants at baseline and follow-up timepoints. Participants who completed treatment protocol were stratified by intrinsic gene expression subsets at baseline, evaluated for event-free survival (EFS) and analysed for differentially expressed genes (DEGs).

RESULTS

Participants from the fibroproliferative subset on HSCT experienced significant improvement in EFS compared with fibroproliferative participants on CYC (p=0.0091). In contrast, EFS did not significantly differ between CYC and HSCT arms for the participants from the normal-like subset (p=0.77) or the inflammatory subset (p=0.1). At each timepoint, we observed considerably more DEGs in HSCT arm compared with CYC arm with HSCT arm showing significant changes in immune response pathways.

CONCLUSIONS

Participants from the fibroproliferative subset showed the most significant long-term benefit from HSCT compared with CYC. This study suggests that intrinsic subset stratification of patients may be used to identify patients with SSc who receive significant benefit from HSCT.

摘要

目的

硬皮病:环磷酰胺或移植(SCOT)试验表明与环磷酰胺(CYC)相比,造血干细胞移植(HSCT)具有临床获益。我们将 SCOT 临床试验中的外周血单个核细胞(PBC)样本映射到硬皮病内在亚群,并检验了它们预测 HSCT 长期反应的假设。

方法

我们分析了来自 SCOT 参与者的 PBC 中的基因表达,以确定差异治疗反应。SCOT 参与者的 PBC 基因表达数据来自 63 名基线和随访时间点的参与者。根据基线时的内在基因表达亚群对完成治疗方案的参与者进行分层,评估无事件生存(EFS)并分析差异表达基因(DEGs)。

结果

与 CYC 组的纤维化增生参与者相比,HSCT 组的纤维化增生参与者的 EFS 显著改善(p=0.0091)。相比之下,对于正常样亚组(p=0.77)或炎症亚组(p=0.1)的参与者,EFS 在 CYC 和 HSCT 组之间没有显著差异。在每个时间点,我们观察到 HSCT 组的 DEG 明显多于 CYC 组,HSCT 组的免疫反应途径显示出显著变化。

结论

与 CYC 相比,纤维化增生亚组的参与者从 HSCT 中获得了最显著的长期益处。这项研究表明,患者的内在亚群分层可能用于识别从 HSCT 中获得显著益处的 SSc 患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3eec/8582621/9d971ad86fb8/nihms-1749887-f0001.jpg

相似文献

1
Machine learning predicts stem cell transplant response in severe scleroderma.机器学习预测严重硬皮病患者干细胞移植反应。
Ann Rheum Dis. 2020 Dec;79(12):1608-1615. doi: 10.1136/annrheumdis-2020-217033. Epub 2020 Sep 15.

引用本文的文献

1
An international perspective on the future of systemic sclerosis research.系统性硬化症研究未来的国际视角。
Nat Rev Rheumatol. 2025 Mar;21(3):174-187. doi: 10.1038/s41584-024-01217-2. Epub 2025 Feb 14.
9
Precision medicine: the precision gap in rheumatic disease.精准医学:风湿性疾病中的精准差距。
Nat Rev Rheumatol. 2022 Dec;18(12):725-733. doi: 10.1038/s41584-022-00845-w. Epub 2022 Oct 10.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验