Suppr超能文献

整合素和自分泌 IGF2 通路控制β细胞的空腹胰岛素分泌。

Integrin and autocrine IGF2 pathways control fasting insulin secretion in β-cells.

机构信息

Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland.

UMR DIATHEC, Centre Européen d'Etude du Diabète, UMR DIATHEC, Strasbourg, France.

出版信息

J Biol Chem. 2020 Dec 4;295(49):16510-16528. doi: 10.1074/jbc.RA120.012957. Epub 2020 Sep 15.

Abstract

Elevated levels of fasting insulin release and insufficient glucose-stimulated insulin secretion (GSIS) are hallmarks of diabetes. Studies have established cross-talk between integrin signaling and insulin activity, but more details of how integrin-dependent signaling impacts the pathophysiology of diabetes are needed. Here, we dissected integrin-dependent signaling pathways involved in the regulation of insulin secretion in β-cells and studied their link to the still debated autocrine regulation of insulin secretion by insulin/insulin-like growth factor (IGF) 2-AKT signaling. We observed for the first time a cooperation between different AKT isoforms and focal adhesion kinase (FAK)-dependent adhesion signaling, which either controlled GSIS or prevented insulin secretion under fasting conditions. Indeed, β-cells form integrin-containing adhesions, which provide anchorage to the pancreatic extracellular matrix and are the origin of intracellular signaling via FAK and paxillin. Under low-glucose conditions, β-cells adopt a starved adhesion phenotype consisting of actin stress fibers and large peripheral focal adhesion. In contrast, glucose stimulation induces cell spreading, actin remodeling, and point-like adhesions that contain phospho-FAK and phosphopaxillin, located in small protrusions. Rat primary β-cells and mouse insulinomas showed an adhesion remodeling during GSIS resulting from autocrine insulin/IGF2 and AKT1 signaling. However, under starving conditions, the maintenance of stress fibers and the large adhesion phenotype required autocrine IGF2-IGF1 receptor signaling mediated by AKT2 and elevated FAK-kinase activity and ROCK-RhoA levels but low levels of paxillin phosphorylation. This starved adhesion phenotype prevented excessive insulin granule release to maintain low insulin secretion during fasting. Thus, deregulation of the IGF2 and adhesion-mediated signaling may explain dysfunctions observed in diabetes.

摘要

空腹胰岛素释放水平升高和葡萄糖刺激的胰岛素分泌不足(GSIS)是糖尿病的特征。研究已经确立了整合素信号与胰岛素活性之间的串扰,但需要更多关于整合素依赖性信号如何影响糖尿病病理生理学的细节。在这里,我们剖析了参与β细胞胰岛素分泌调节的整合素依赖性信号通路,并研究了它们与胰岛素/胰岛素样生长因子(IGF)2-AKT 信号的自体调节对胰岛素分泌的仍有争议的联系。我们首次观察到不同 AKT 同工型与粘着斑激酶(FAK)依赖性粘着信号之间的合作,该信号要么控制 GSIS,要么在空腹条件下阻止胰岛素分泌。事实上,β细胞形成含有整合素的黏附物,这些黏附物为胰腺细胞外基质提供附着,并通过 FAK 和桩蛋白提供细胞内信号的起源。在低糖条件下,β细胞采用饥饿黏附表型,由肌动蛋白应力纤维和大的外周粘着斑组成。相比之下,葡萄糖刺激诱导细胞铺展、肌动蛋白重塑和含有磷酸化 FAK 和磷酸化桩蛋白的点状黏附,这些黏附位于小突起中。大鼠原代β细胞和小鼠胰岛素瘤在自体胰岛素/IGF2 和 AKT1 信号作用下表现出 GSIS 期间的黏附重塑。然而,在饥饿条件下,维持应力纤维和大的黏附表型需要 AKT2 和升高的 FAK 激酶活性和 ROCK-RhoA 水平介导的自体 IGF2-IGF1 受体信号,但需要低水平的桩蛋白磷酸化。这种饥饿黏附表型阻止了过多的胰岛素颗粒释放,以维持空腹期间的低胰岛素分泌。因此,IGF2 和黏附介导的信号转导的失调可能解释了糖尿病中观察到的功能障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97b8/7864053/1f50fc88cda7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验