Division of Infectious Diseases, Department of Pediatrics, University of California, San Diego, La Jolla, California, USA.
Department of Nanoengineering, University of California, San Diego, La Jolla, California, USA.
mBio. 2020 Sep 15;11(5):e00903-20. doi: 10.1128/mBio.00903-20.
Therapeutic strategies that provide effective and broad-spectrum neutralization against HIV-1 infection are highly desirable. Here, we investigate the potential of nanoengineered CD4 T cell membrane-coated nanoparticles (TNP) to neutralize a broad range of HIV-1 strains. TNP displayed outstanding neutralizing breadth and potency; they neutralized all 125 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, and transmitted/founder viruses, with a geometric mean 80% inhibitory concentration (IC) of 819μg ml (range, 72 to 8,570 μg ml). TNP also selectively bound to and induced autophagy in HIV-1-infected CD4 T cells and macrophages, while having no effect on uninfected cells. This TNP-mediated autophagy inhibited viral release and reduced cell-associated HIV-1 in a dose- and phospholipase D1-dependent manner. Genetic or pharmacological inhibition of autophagy ablated this effect. Thus, we can use TNP as therapeutic agents to neutralize cell-free HIV-1 and to target HIV-1 gp120-expressing cells to decrease the HIV-1 reservoir. HIV-1 is a major global health challenge. The development of an effective vaccine and/or a therapeutic cure is a top priority. The creation of vaccines that focus an antibody response toward a particular epitope of a protein has shown promise, but the genetic diversity of HIV-1 hinders this progress. Here we developed an approach using nanoengineered CD4 T cell membrane-coated nanoparticles (TNP). Not only do TNP effectively neutralize all strains of HIV-1, but they also selectively bind to infected cells and decrease the release of HIV-1 particles through an autophagy-dependent mechanism with no drug-induced off-target or cytotoxic effects on bystander cells.
治疗策略,提供有效和广谱中和针对 HIV-1 感染是非常可取的。在这里,我们研究了纳米工程 CD4 T 细胞膜包被的纳米粒子(TNP)的潜力中和广泛的 HIV-1 株。TNP 显示出出色的中和广度和效力;他们中和了所有 125 种 HIV-1 假型病毒测试,包括全球亚型/重组形式,和传播/创始人病毒,几何平均 80%抑制浓度(IC)为 819μg ml(范围,72 至 8570μg ml)。TNP 还选择性地结合并诱导 HIV-1 感染的 CD4 T 细胞和巨噬细胞自噬,而对未感染的细胞没有影响。这种 TNP 介导的自噬抑制病毒释放,并减少细胞相关的 HIV-1 呈剂量依赖性和磷脂酶 D1 依赖性方式。自噬的遗传或药物抑制消除了这种效应。因此,我们可以使用 TNP 作为治疗剂来中和游离的 HIV-1,并针对 HIV-1 gp120 表达细胞,以减少 HIV-1 储存库。HIV-1 是一个主要的全球健康挑战。开发有效的疫苗和/或治疗性治愈是当务之急。开发针对蛋白质特定表位的抗体反应的疫苗已经显示出希望,但 HIV-1 的遗传多样性阻碍了这一进展。在这里,我们使用纳米工程 CD4 T 细胞膜包被的纳米粒子(TNP)开发了一种方法。TNP 不仅有效地中和所有 HIV-1 株,而且还选择性地结合感染细胞,并通过自噬依赖性机制减少 HIV-1 颗粒的释放,而对旁观者细胞没有药物诱导的脱靶或细胞毒性作用。