Jia Mengyang, Zhao Ning, Bi Zhijie, Fu Zhengqian, Xu Fangfang, Shi Chuan, Guo Xiangxin
College of Physics, Qingdao University, Qingdao 266071, China.
Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
ACS Appl Mater Interfaces. 2020 Oct 14;12(41):46162-46169. doi: 10.1021/acsami.0c13434. Epub 2020 Sep 30.
Flexible membrane electrolytes consisting of LiLaZrTaO (LLZTO) fillers in poly(propylene carbonate) (PPC) are considered promising for developing solid lithium batteries with high energy density and safety. However, LLZTO particles tend to agglomerate owing to their high surface energy, especially concerning their distribution in PPC that has low surface energy. Moreover, basic LLZTO particles attack PPC, resulting in its decomposition. Such problems make it difficult to achieve membrane electrolytes of PPC/LLZTO with high conduction and stability. In this work, continuous polydopamine (PDA) layers with a thickness of 4 nm are coated on LLZTO particles. Characterized by synchrotron X-ray microtomography and scanning electron microscopy, the PDA-coated LLZTO particles show homogeneous dispersion in PPC, which is attributed to the reduced surface energy of the LLZTO particles. Besides, this coating hinders the reaction between LLZTO and PPC, which improves the chemical stability of the membrane electrolytes. Consequently, the cells based on membrane electrolytes with PDA-coated LLZTO particles in PPC show improved electrochemical performance and cycling stability. These results demonstrate that the strategy of coating basic LLZTO particles is powerful for enhancing their usability in the high-performance membrane electrolytes for solid lithium batteries.
由聚碳酸亚丙酯(PPC)中填充锂镧锆钽氧化物(LLZTO)组成的柔性膜电解质被认为在开发具有高能量密度和安全性的固态锂电池方面具有潜力。然而,由于LLZTO颗粒具有较高的表面能,它们容易团聚,尤其是在表面能较低的PPC中的分布情况。此外,碱性的LLZTO颗粒会侵蚀PPC,导致其分解。这些问题使得难以实现具有高传导性和稳定性的PPC/LLZTO膜电解质。在这项工作中,在LLZTO颗粒上涂覆了厚度为4纳米的连续聚多巴胺(PDA)层。通过同步加速器X射线显微断层扫描和扫描电子显微镜表征,涂覆PDA的LLZTO颗粒在PPC中显示出均匀分散,这归因于LLZTO颗粒表面能的降低。此外,这种涂层阻碍了LLZTO与PPC之间的反应,从而提高了膜电解质的化学稳定性。因此,基于在PPC中含有涂覆PDA的LLZTO颗粒的膜电解质的电池表现出改善的电化学性能和循环稳定性。这些结果表明,涂覆碱性LLZTO颗粒的策略对于提高其在固态锂电池高性能膜电解质中的可用性非常有效。