Djajamuliadi Jhonsen, Ohgo Kosuke, Kumashiro Kristin K
Department of Chemistry, University of Hawaii, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States.
J Phys Chem B. 2020 Oct 15;124(41):9017-9028. doi: 10.1021/acs.jpcb.0c06811. Epub 2020 Sep 30.
Elastin is the insoluble elastomeric protein that provides extensibility and resilience to vertebrate tissues. Limited high-resolution structural data for elastin are notably complex. To access this information, this protein is considered in the simplified context of its two general domain types, that is, hydrophobic (HP) and crosslinking (CL). The question of elastin's structure-function has directed the focus of nearly all previous studies in the literature to the unique repeating sequences characteristic of this protein, found primarily in the HP domains. The CL domains were assumed to play a very limited role in biological elasticity due in part to the significant α-helical character that was (incorrectly) predicted for these regions. In this study, the conformational heterogeneity of alanines in native elastin's CL domains is examined in the context of helix-coil transition theory (HCTT) using solid-state nuclear magnetic resonance (SSNMR) spectroscopy in tandem with strategic isotopic labeling. Helix and coil populations are observed at all temperatures, but the former increases significantly at lower temperatures. Below the glass transition temperature (), two major populations of alanines in the CL regions are resolved by two-dimensional SSNMR; one-dimensional methods are used for characterization in nativelike conditions. The spectra of CO-Ala in the CL regions are simulated using an HCTT-based statistical mechanical representation. Below , longer segments with significant helical probabilities are consistent with the experimental data. At higher temperatures, the SSNMR lineshapes are best fit with a distribution of shorter (Ala) segments, most in random coil. These results are used to refine a structure-function model for elastin in the context of HCTT, redirecting attention to the CL domains and their role in elasticity.
弹性蛋白是一种不溶性的弹性蛋白,为脊椎动物组织提供伸展性和弹性。弹性蛋白有限的高分辨率结构数据显著复杂。为了获取这些信息,该蛋白在其两种一般结构域类型的简化背景下进行考量,即疏水(HP)结构域和交联(CL)结构域。弹性蛋白的结构与功能问题使得文献中几乎所有先前研究的重点都集中在该蛋白独特的重复序列上,这些序列主要存在于HP结构域中。CL结构域被认为在生物弹性中作用非常有限,部分原因是(错误地)预测这些区域具有显著的α螺旋特征。在本研究中,利用固态核磁共振(SSNMR)光谱并结合策略性同位素标记,在螺旋 - 卷曲转变理论(HCTT)的背景下研究了天然弹性蛋白CL结构域中丙氨酸的构象异质性。在所有温度下都观察到了螺旋和卷曲构象群体,但前者在较低温度下显著增加。在玻璃化转变温度以下,通过二维SSNMR解析了CL区域中丙氨酸的两个主要群体;一维方法用于在类似天然条件下进行表征。使用基于HCTT的统计力学表示法模拟了CL区域中CO - Ala的光谱。在以下温度下,具有显著螺旋概率的较长片段与实验数据一致。在较高温度下,SSNMR线形最适合较短(Ala)片段的分布,大多数处于无规卷曲状态。这些结果用于在HCTT的背景下完善弹性蛋白的结构 - 功能模型,将注意力重新引向CL结构域及其在弹性中的作用。