Bonin Gus O, Barrow Steven J, Connell Timothy U, Roberts Ann, Chesman Anthony S R, Gómez Daniel E
School of Science, RMIT University, Melbourne, VIC 3000, Australia.
ARC Centre of Excellence for Transformative Meta-Optical Systems, School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia.
J Phys Chem Lett. 2020 Oct 1;11(19):8378-8385. doi: 10.1021/acs.jpclett.0c02461. Epub 2020 Sep 22.
Structures capable of perfect light absorption promise technological advancements in varied applications, including sensing, optoelectronics, and photocatalysis. While it is possible to realize such structures by placing a monolayer of metal nanostructures above a reflecting surface, there remains limited studies on what effect particle size plays on their capacity to absorb light. Here, we fabricate near-perfect absorbers using colloidal Au nanoparticles, via their electrostatic self-assembly on a TiO film supported by a gold mirror. This method enables the control of interparticle spacing, thus minimizing reflection to achieve optimal absorption. Slightly altering the nanoparticle size in these structures reveals significant changes in the spectral separation of hybrid optical modes. We rationalize this observation by interpreting data with a coupled-mode theory that provides a thorough basis for creating functional absorbers using complex colloids and outlines the key considerations for achieving a broadened spectral response.
能够实现完美光吸收的结构有望在包括传感、光电子学和光催化在内的各种应用中推动技术进步。虽然通过在反射表面上方放置单层金属纳米结构来实现这种结构是可行的,但关于粒径对其光吸收能力有何影响的研究仍然有限。在这里,我们通过胶体金纳米颗粒在金镜支撑的TiO薄膜上的静电自组装来制造近乎完美的吸收体。这种方法能够控制颗粒间间距,从而将反射降至最低以实现最佳吸收。略微改变这些结构中的纳米颗粒大小会揭示混合光学模式的光谱分离发生显著变化。我们通过用耦合模理论解释数据来合理化这一观察结果,该理论为使用复杂胶体创建功能性吸收体提供了全面的基础,并概述了实现拓宽光谱响应的关键考虑因素。