Suppr超能文献

超强宽TM Mie带隙容忍无序。

Super strong wide TM Mie bandgaps tolerating disorders.

作者信息

Goudarzi Kiyanoush, Lee Moonjoo

机构信息

Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.

出版信息

Sci Rep. 2022 May 12;12(1):7884. doi: 10.1038/s41598-022-11610-0.

Abstract

This study demonstrates the appearance of super intense and wide Mie bandgaps in metamaterials composed of tellurium, germanium, and silicon rods in air that tolerate some disordering of rod position and rod radius under transverse magnetic (TM) polarized light waves. Tellurium metamaterials reveal [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] Mie bandgap modes in which [Formula: see text], [Formula: see text], and [Formula: see text] tolerate high rod-position disordering of [Formula: see text] and rod-radius disordering of 34 and [Formula: see text], respectively. Results for germanium metamaterials show Mie bandgap modes [Formula: see text], [Formula: see text], and [Formula: see text], in which [Formula: see text] and [Formula: see text] tolerate rod-position disordering of [Formula: see text], and rod-radius disordering of 34 and [Formula: see text], respectively. Using these characteristics of [Formula: see text] in germanium metamaterials under position and radius disordering, ultra-narrow straight, L-shaped, and crossing waveguides that contain 14, four, and two rows of germanium rods in air are designed. Also, it is shown that [Formula: see text] Mie bandgap appears in metamaterials containing a high refractive index, and disappears in metamaterials with a lower refractive index such as silicon; in contrast, a new phenomenon of intense and broadband [Formula: see text], [Formula: see text], and [Formula: see text] in metamaterials with a lower refractive index such as silicon appear. In silicon-based metamaterials, [Formula: see text] tolerates high rod-position and rod-radius disordering of [Formula: see text] and [Formula: see text], respectively, and [Formula: see text] shows robustness to rod-position and rod-radius disordering of [Formula: see text]. This strong tolerance of disordering of TM modes in tellurium, germanium, and silicon metamaterials opens a new way to design small, high-efficient, and feasible fabrication optical devices for optical integrated circuits.

摘要

本研究展示了在空气中由碲、锗和硅棒组成的超材料中出现的超强且宽的米氏带隙,这些超材料在横向磁(TM)偏振光波下能容忍棒位置和棒半径的一定无序性。碲超材料展现出[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]、[公式:见原文]米氏带隙模式,其中[公式:见原文]、[公式:见原文]和[公式:见原文]分别能容忍高达[公式:见原文]的棒位置无序性以及34和[公式:见原文]的棒半径无序性。锗超材料的结果显示出米氏带隙模式[公式:见原文]、[公式:见原文]和[公式:见原文],其中[公式:见原文]和[公式:见原文]分别能容忍[公式:见原文]的棒位置无序性以及34和[公式:见原文]的棒半径无序性。利用锗超材料在位置和半径无序情况下的这些[公式:见原文]特性,设计出了在空气中包含14排、4排和2排锗棒的超窄直形、L形和交叉波导。此外,研究表明[公式:见原文]米氏带隙出现在具有高折射率的超材料中,而在诸如硅等具有较低折射率的超材料中消失;相反,在诸如硅等具有较低折射率的超材料中出现了强烈且宽带的[公式:见原文]、[公式:见原文]和[公式:见原文]新现象。在硅基超材料中,[公式:见原文]分别能容忍高达[公式:见原文]的棒位置和棒半径无序性,并且[公式:见原文]对[公式:见原文]的棒位置和棒半径无序性表现出鲁棒性。碲、锗和硅超材料中TM模式对无序性的这种强容忍性为设计用于光集成电路的小型、高效且可行制造的光学器件开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1a7/9098900/763593f44474/41598_2022_11610_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验