Suppr超能文献

突触锌对N-甲基-D-天冬氨酸受体的抑制作用取决于谷氨酸受体亚基2A(GluN2A)与锌转运体1(ZnT1)的结合。

Synaptic zinc inhibition of NMDA receptors depends on the association of GluN2A with the zinc transporter ZnT1.

作者信息

Krall Rebecca F, Moutal Aubin, Phillips Matthew B, Asraf Hila, Johnson Jon W, Khanna Rajesh, Hershfinkel Michal, Aizenman Elias, Tzounopoulos Thanos

机构信息

Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.

Pittsburgh Hearing Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.

出版信息

Sci Adv. 2020 Jul 3;6(27). doi: 10.1126/sciadv.abb1515. Print 2020 Jul.

Abstract

The NMDA receptor (NMDAR) is inhibited by synaptically released zinc. This inhibition is thought to be the result of zinc diffusion across the synaptic cleft and subsequent binding to the extracellular domain of the NMDAR. However, this model fails to incorporate the observed association of the highly zinc-sensitive NMDAR subunit GluN2A with the postsynaptic zinc transporter ZnT1, which moves intracellular zinc to the extracellular space. Here, we report that disruption of ZnT1-GluN2A association by a cell-permeant peptide strongly reduced NMDAR inhibition by synaptic zinc in mouse dorsal cochlear nucleus synapses. Moreover, synaptic zinc inhibition of NMDARs required postsynaptic intracellular zinc, suggesting that cytoplasmic zinc is transported by ZnT1 to the extracellular space in close proximity to the NMDAR. These results challenge a decades-old dogma on how zinc inhibits synaptic NMDARs and demonstrate that presynaptic release and a postsynaptic transporter organize zinc into distinct microdomains to modulate NMDAR neurotransmission.

摘要

N-甲基-D-天冬氨酸受体(NMDAR)受到突触释放的锌的抑制。这种抑制作用被认为是锌扩散穿过突触间隙并随后与NMDAR的细胞外结构域结合的结果。然而,该模型未能纳入观察到的高度锌敏感的NMDAR亚基GluN2A与突触后锌转运体ZnT1的关联,ZnT1可将细胞内锌转运到细胞外空间。在此,我们报告,一种可穿透细胞的肽破坏ZnT1-GluN2A的关联,会强烈降低小鼠耳蜗背侧核突触中突触锌对NMDAR的抑制作用。此外,NMDAR的突触锌抑制作用需要突触后细胞内锌,这表明细胞质锌由ZnT1转运到紧邻NMDAR的细胞外空间。这些结果挑战了几十年来关于锌如何抑制突触NMDAR的教条,并证明突触前释放和突触后转运体将锌组织成不同的微区,以调节NMDAR神经传递。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfb2/7458442/2073f9fb0e14/abb1515-F1.jpg

相似文献

2
Intracellular zinc signaling influences NMDA receptor function by enhancing the interaction of ZnT1 with GluN2A.
Neurosci Lett. 2022 Nov 1;790:136896. doi: 10.1016/j.neulet.2022.136896. Epub 2022 Oct 3.
3
Zinc transporter-1 concentrates at the postsynaptic density of hippocampal synapses.
Mol Brain. 2014 Mar 7;7:16. doi: 10.1186/1756-6606-7-16.
4
Zinc dynamics and action at excitatory synapses.
Neuron. 2014 Jun 4;82(5):1101-14. doi: 10.1016/j.neuron.2014.04.034.
5
Presynaptic Effects of N-Methyl-D-Aspartate Receptors Enhance Parvalbumin Cell-Mediated Inhibition of Pyramidal Cells in Mouse Prefrontal Cortex.
Biol Psychiatry. 2018 Sep 15;84(6):460-470. doi: 10.1016/j.biopsych.2018.01.018. Epub 2018 Jan 31.
6
Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2705-14. doi: 10.1073/pnas.1503348112. Epub 2015 May 6.
7
Rabphilin 3A: A novel target for the treatment of levodopa-induced dyskinesias.
Neurobiol Dis. 2017 Dec;108:54-64. doi: 10.1016/j.nbd.2017.08.001. Epub 2017 Aug 18.
8
NMDARs Adapt to Neurotoxic HIV Protein Tat Downstream of a GluN2A-Ubiquitin Ligase Signaling Pathway.
J Neurosci. 2016 Dec 14;36(50):12640-12649. doi: 10.1523/JNEUROSCI.2980-16.2016. Epub 2016 Nov 3.
9
Zinc transporter-1: a novel NMDA receptor-binding protein at the postsynaptic density.
J Neurochem. 2015 Jan;132(2):159-68. doi: 10.1111/jnc.12968. Epub 2015 Jan 4.
10
Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function.
Neuron. 2016 Mar 2;89(5):983-99. doi: 10.1016/j.neuron.2016.01.016. Epub 2016 Feb 11.

引用本文的文献

1
Zinc-Dependent Modulation of Dopamine Release and Uptake Is Altered in Parkinson's Disease Model Zebrafish.
ACS Chem Neurosci. 2025 May 21;16(10):1872-1882. doi: 10.1021/acschemneuro.4c00864. Epub 2025 Apr 30.
2
Prospects and challenges in NMDAR signaling in spinal cord injury recovery and neural circuit remodeling.
Regen Ther. 2025 Apr 9;29:381-389. doi: 10.1016/j.reth.2025.03.008. eCollection 2025 Jun.
3
Role of Copper and Zinc Ions in the Hydrolytic Degradation of Neurodegeneration-Related Peptides.
Molecules. 2025 Jan 17;30(2):363. doi: 10.3390/molecules30020363.
5
SENP6-Mediated deSUMOylation of Nrf2 Exacerbates Neuronal Oxidative Stress Following Cerebral Ischemia and Reperfusion Injury.
Adv Sci (Weinh). 2025 Feb;12(7):e2410410. doi: 10.1002/advs.202410410. Epub 2024 Dec 24.
6
Structural insights into human zinc transporter ZnT1 mediated Zn efflux.
EMBO Rep. 2024 Nov;25(11):5006-5025. doi: 10.1038/s44319-024-00287-3. Epub 2024 Oct 10.
7
Cell-type-specific enhancement of deviance detection by synaptic zinc in the mouse auditory cortex.
Proc Natl Acad Sci U S A. 2024 Oct;121(40):e2405615121. doi: 10.1073/pnas.2405615121. Epub 2024 Sep 23.
8
On the genesis and unique functions of zinc neuromodulation.
J Neurophysiol. 2024 Oct 1;132(4):1241-1254. doi: 10.1152/jn.00285.2024. Epub 2024 Aug 28.
9
The physiological and pathophysiological roles of copper in the nervous system.
Eur J Neurosci. 2024 Jul;60(1):3505-3543. doi: 10.1111/ejn.16370. Epub 2024 May 15.

本文引用的文献

2
Suppression of Presynaptic Glutamate Release by Postsynaptic Metabotropic NMDA Receptor Signalling to Pannexin-1.
J Neurosci. 2020 Jan 22;40(4):729-742. doi: 10.1523/JNEUROSCI.0257-19.2019. Epub 2019 Dec 9.
3
Zinc transporter 1 (ZNT1) expression on the cell surface is elaborately controlled by cellular zinc levels.
J Biol Chem. 2019 Oct 25;294(43):15686-15697. doi: 10.1074/jbc.RA119.010227. Epub 2019 Aug 30.
5
Fine Control of Sound Frequency Tuning and Frequency Discrimination Acuity by Synaptic Zinc Signaling in Mouse Auditory Cortex.
J Neurosci. 2019 Jan 30;39(5):854-865. doi: 10.1523/JNEUROSCI.1339-18.2018. Epub 2018 Nov 30.
6
Signaling by Synaptic Zinc is Required for Whisker-Mediated, Fine Texture Discrimination.
Neuroscience. 2018 Jan 15;369:242-247. doi: 10.1016/j.neuroscience.2017.11.020. Epub 2017 Nov 20.
8
Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function.
Neurosci Biobehav Rev. 2017 Sep;80:329-350. doi: 10.1016/j.neubiorev.2017.06.006. Epub 2017 Jun 15.
9
Targeting a Potassium Channel/Syntaxin Interaction Ameliorates Cell Death in Ischemic Stroke.
J Neurosci. 2017 Jun 7;37(23):5648-5658. doi: 10.1523/JNEUROSCI.3811-16.2017. Epub 2017 May 8.
10
Context-Dependent Modulation of Excitatory Synaptic Strength by Synaptically Released Zinc.
eNeuro. 2017 Mar 3;4(1). doi: 10.1523/ENEURO.0011-17.2017. eCollection 2017 Jan-Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验