Cell Physiology Laboratory, Department of Physiology, Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea, and.
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 03063, Republic of Korea.
J Neurosci. 2019 May 15;39(20):3812-3831. doi: 10.1523/JNEUROSCI.2130-18.2019. Epub 2019 Mar 4.
Repetitive action potentials (APs) in hippocampal CA3 pyramidal cells (CA3-PCs) backpropagate to distal apical dendrites, and induce calcium and protein tyrosine kinase (PTK)-dependent downregulation of Kv1.2, resulting in long-term potentiation of direct cortical inputs and intrinsic excitability (LTP-IE). When APs were elicited by direct somatic stimulation of CA3-PCs from rodents of either sex, only a narrow window of distal dendritic [Ca] allowed LTP-IE because of Ca-dependent coactivation of PTK and protein tyrosine phosphatase (PTP), which renders non-mossy fiber (MF) inputs incompetent in LTP-IE induction. High-frequency MF inputs, however, could induce LTP-IE at high dendritic [Ca] of the window. We show that MF input-induced Zn signaling inhibits postsynaptic PTP, and thus enables MF inputs to induce LTP-IE at a wide range of [Ca] values. Extracellular chelation of Zn or genetic deletion of vesicular zinc transporter abrogated the privilege of MF inputs for LTP-IE induction. Moreover, the incompetence of somatic stimulation was rescued by the inhibition of PTP or a supplement of extracellular zinc, indicating that MF input-induced increase in dendritic [Zn] facilitates the induction of LTP-IE by inhibiting PTP. Consistently, high-frequency MF stimulation induced immediate and delayed elevations of [Zn] at proximal and distal dendrites, respectively. These results indicate that MF inputs are uniquely linked to the regulation of direct cortical inputs owing to synaptic Zn signaling. Zn has been mostly implicated in pathological processes, and the physiological roles of synaptically released Zn in intracellular signaling are little known. We show here that Zn released from hippocampal mossy fiber (MF) terminals enters postsynaptic CA3 pyramidal cells, and plays a facilitating role in MF input-induced heterosynaptic potentiation of perforant path (PP) synaptic inputs through long-term potentiation of intrinsic excitability (LTP-IE). We show that the window of cytosolic [Ca] that induces LTP-IE is normally very narrow because of the Ca-dependent coactivation of antagonistic signaling pairs, whereby non-MF inputs become ineffective in inducing excitability change. The MF-induced Zn signaling, however, biases toward facilitating the induction of LTP-IE. The present study elucidates why MF inputs are more privileged for the regulation of PP synapses.
海马 CA3 锥体神经元 (CA3-PCs) 的重复动作电位 (APs) 逆行传播到远端顶树突,诱导钙和蛋白酪氨酸激酶 (PTK) 依赖性的 Kv1.2 下调,导致直接皮质输入和内在兴奋性的长期增强 (LTP-IE)。当通过直接刺激雄性或雌性啮齿动物的 CA3-PC 体来引发 APs 时,由于 Ca 依赖性的 PTK 和蛋白酪氨酸磷酸酶 (PTP) 的共激活,只有狭窄的远端树突 [Ca] 窗口允许 LTP-IE,这使得非苔藓纤维 (MF) 输入在 LTP-IE 诱导中无效。然而,高频 MF 输入可以在窗口的高树突 [Ca] 下诱导 LTP-IE。我们表明,MF 输入诱导的 Zn 信号抑制突触后 PTP,从而使 MF 输入能够在广泛的 [Ca] 值下诱导 LTP-IE。细胞外 Zn 螯合或囊泡锌转运体的基因缺失消除了 MF 输入诱导 LTP-IE 的特权。此外,PTP 的抑制或细胞外锌的补充挽救了体刺激的无能,表明 MF 输入诱导的树突 [Zn] 增加通过抑制 PTP 促进 LTP-IE 的诱导。一致地,高频 MF 刺激分别在近端和远端树突立即和延迟地引起 [Zn] 的升高。这些结果表明,由于突触 Zn 信号,MF 输入与直接皮质输入的调节独特地相关。Zn 主要与病理过程有关,突触释放的 Zn 在细胞内信号中的生理作用知之甚少。我们在这里表明,从海马苔藓纤维 (MF) 末梢释放的 Zn 进入突触后的 CA3 锥体细胞,并通过内在兴奋性的长期增强 (LTP-IE) 发挥促进作用,促进穿通路径 (PP) 突触输入的异突触增强。我们表明,正常情况下,诱导 LTP-IE 的细胞浆 [Ca] 窗口非常狭窄,因为拮抗信号对的 Ca 依赖性共激活,使得非 MF 输入在诱导兴奋性变化方面变得无效。然而,MF 诱导的 Zn 信号有利于促进 LTP-IE 的诱导。本研究阐明了为什么 MF 输入更有利于调节 PP 突触。