Yurchenko Ilya, Jayasekara Anuja S, Cebe Peggy, Staii Cristian
Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, MA, 02155, United States of America.
Nanotechnology. 2020 Dec 11;31(50):505713. doi: 10.1088/1361-6528/abb902.
We use a new method based on electrostatic force microscopy (EFM) to perform quantitative measurements of the dielectric constants of individual electrospun nanofibers of poly(L-lactic acid) (PLLA), as well as composite fibers of PLLA with embedded multiwall carbon nanotubes (MWCNT-PLLA). The EFM data record the oscillation phase of an atomic force microscope (AFM) cantilever as a function of the AFM tip position. In our experiments the relative dielectric constants ϵ of the sample are measured from the EFM phase shifts vs. the tip-surface separation, according to a simple analytical model describing the tip-surface interactions. We perform a comprehensive study of how the dielectric constant depends on the fiber diameter for both electrospun PLLA and MWCNT/PLLA fiber composites. Our measurements show that EFM can distinguish between dielectric properties of PLLA fibers and fiber composites with different diameters. Dielectric constants of both PLLA and MWCNT-PLLA composite fibers decrease with increasing fiber diameter. In the limit of large fiber diameters (D > 100 nm), we measure dielectric constants in the range: ϵ = 3.4-3.8, similar to the values obtained for unoriented PLLA films: ϵ = 2.4-3.8. Moreover, the dielectric constants of the small diameter MWCNT-PLLA composites are significantly larger than the corresponding values obtained for PLLA fibers. For MWCNT-PLLA nanofiber composites of small diameters (D < 50 nm), ϵ approaches the values measured for neat MWCNT: ϵ = 12 ± 2. These results are consistent with a simple fiber structural model that shows higher polarizability of thinner fibers, and composites that contain MWCNTs. The experimental method has a high-resolution for measuring the dielectric constant of soft materials, and is simple to implement on standard atomic force microscopes. This non-invasive technique can be applied to measure the electrical properties of polymers, interphases, and polymer nanocomposites.
我们使用一种基于静电力显微镜(EFM)的新方法,对聚(L-乳酸)(PLLA)的单根电纺纳米纤维以及嵌入多壁碳纳米管的PLLA复合纤维(MWCNT-PLLA)的介电常数进行定量测量。EFM数据记录原子力显微镜(AFM)悬臂的振荡相位随AFM针尖位置的变化。在我们的实验中,根据描述针尖-表面相互作用的简单分析模型,从EFM相移与针尖-表面间距的关系中测量样品的相对介电常数ϵ。我们对电纺PLLA和MWCNT/PLLA纤维复合材料的介电常数如何依赖于纤维直径进行了全面研究。我们的测量表明,EFM可以区分不同直径的PLLA纤维和纤维复合材料的介电性能。PLLA和MWCNT-PLLA复合纤维的介电常数均随纤维直径的增加而降低。在大纤维直径(D>100 nm)的极限情况下,我们测量的介电常数范围为:ϵ = 3.4 - 3.8,与未取向PLLA薄膜获得的值相似:ϵ = 2.4 - 3.8。此外,小直径MWCNT-PLLA复合材料的介电常数明显大于PLLA纤维的相应值。对于小直径(D<50 nm)的MWCNT-PLLA纳米纤维复合材料,ϵ接近纯MWCNT测量的值:ϵ = 12±2。这些结果与一个简单的纤维结构模型一致,该模型表明较细纤维以及含有MWCNT的复合材料具有更高的极化率。该实验方法在测量软材料的介电常数方面具有高分辨率,并且易于在标准原子力显微镜上实施。这种非侵入性技术可用于测量聚合物、界面和聚合物纳米复合材料的电学性质。