Suppr超能文献

基于自适应多感兴趣区域的草莓田自主作物行导航。

Autonomous Crop Row Guidance Using Adaptive Multi-ROI in Strawberry Fields.

机构信息

Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway.

SINTEF Digital, Forskningsveien 1, 0373 Oslo, Norway.

出版信息

Sensors (Basel). 2020 Sep 14;20(18):5249. doi: 10.3390/s20185249.

Abstract

Automated robotic platforms are an important part of precision agriculture solutions for sustainable food production. Agri-robots require robust and accurate guidance systems in order to navigate between crops and to and from their base station. Onboard sensors such as machine vision cameras offer a flexible guidance alternative to more expensive solutions for structured environments such as scanning lidar or RTK-GNSS. The main challenges for visual crop row guidance are the dramatic differences in appearance of crops between farms and throughout the season and the variations in crop spacing and contours of the crop rows. Here we present a visual guidance pipeline for an agri-robot operating in strawberry fields in Norway that is based on semantic segmentation with a convolution neural network (CNN) to segment input RGB images into crop and not-crop (i.e., drivable terrain) regions. To handle the uneven contours of crop rows in Norway's hilly agricultural regions, we develop a new adaptive multi-ROI method for fitting trajectories to the drivable regions. We test our approach in open-loop trials with a real agri-robot operating in the field and show that our approach compares favourably to other traditional guidance approaches.

摘要

自动化机器人平台是可持续粮食生产的精准农业解决方案的重要组成部分。农业机器人需要强大而精确的导航系统,以便在作物之间以及往返其基站进行导航。机器视觉相机等机载传感器为视觉作物行导航提供了一种灵活的替代方案,而对于扫描激光雷达或 RTK-GNSS 等结构化环境,这种替代方案更加昂贵。视觉作物行导航的主要挑战是不同农场和整个季节作物外观的巨大差异,以及作物间距和作物行轮廓的变化。在这里,我们为在挪威草莓田中作业的农业机器人展示了一个视觉导航管道,该管道基于语义分割和卷积神经网络 (CNN),将输入的 RGB 图像分割为作物和非作物(即可行驶地形)区域。为了处理挪威丘陵农业地区作物行的不均匀轮廓,我们开发了一种新的自适应多 ROI 方法,用于将轨迹拟合到可行驶区域。我们在现场作业的真实农业机器人的开环试验中测试了我们的方法,并表明我们的方法与其他传统导航方法相比具有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0fc/7571079/9f7b723c5418/sensors-20-05249-g001.jpg

相似文献

1
Autonomous Crop Row Guidance Using Adaptive Multi-ROI in Strawberry Fields.
Sensors (Basel). 2020 Sep 14;20(18):5249. doi: 10.3390/s20185249.
4
The integration of GPS and visual navigation for autonomous navigation of an Ackerman steering mobile robot in cotton fields.
Front Robot AI. 2024 Apr 12;11:1359887. doi: 10.3389/frobt.2024.1359887. eCollection 2024.
5
Improved Real-Time Semantic Segmentation Network Model for Crop Vision Navigation Line Detection.
Front Plant Sci. 2022 Jun 2;13:898131. doi: 10.3389/fpls.2022.898131. eCollection 2022.
6
Autonomous Thermal Vision Robotic System for Victims Recognition in Search and Rescue Missions.
Sensors (Basel). 2021 Nov 4;21(21):7346. doi: 10.3390/s21217346.
7
Inter-row navigation line detection for cotton with broken rows.
Plant Methods. 2022 Jul 2;18(1):90. doi: 10.1186/s13007-022-00913-y.
8
Tasseled Crop Rows Detection Based on Micro-Region of Interest and Logarithmic Transformation.
Front Plant Sci. 2022 Jun 27;13:916474. doi: 10.3389/fpls.2022.916474. eCollection 2022.
9
Crop row detection in maize fields inspired on the human visual perception.
ScientificWorldJournal. 2012;2012:484390. doi: 10.1100/2012/484390. Epub 2012 Apr 30.

引用本文的文献

2
LFSD: a VSLAM dataset with plant detection and tracking in lettuce farm.
Front Plant Sci. 2023 Aug 29;14:1175743. doi: 10.3389/fpls.2023.1175743. eCollection 2023.
4
Tasseled Crop Rows Detection Based on Micro-Region of Interest and Logarithmic Transformation.
Front Plant Sci. 2022 Jun 27;13:916474. doi: 10.3389/fpls.2022.916474. eCollection 2022.
5
Integrated Indoor Positioning System of Greenhouse Robot Based on UWB/IMU/ODOM/LIDAR.
Sensors (Basel). 2022 Jun 25;22(13):4819. doi: 10.3390/s22134819.

本文引用的文献

1
Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.
PLoS One. 2019 Apr 18;14(4):e0215676. doi: 10.1371/journal.pone.0215676. eCollection 2019.
2
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验