Suppr超能文献

Twadn:一种基于时间扭曲的用于成对动态网络的高效对齐算法。

Twadn: an efficient alignment algorithm based on time warping for pairwise dynamic networks.

机构信息

School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.

Xi'an Mingde Institute of Technology, Fenghe Campus, Fenghe Campus, Xi'an, 710124, China.

出版信息

BMC Bioinformatics. 2020 Sep 17;21(Suppl 13):385. doi: 10.1186/s12859-020-03672-6.

Abstract

BACKGROUND

Network alignment is an efficient computational framework in the prediction of protein function and phylogenetic relationships in systems biology. However, most of existing alignment methods focus on aligning PPIs based on static network model, which are actually dynamic in real-world systems. The dynamic characteristic of PPI networks is essential for understanding the evolution and regulation mechanism at the molecular level and there is still much room to improve the alignment quality in dynamic networks.

RESULTS

In this paper, we proposed a novel alignment algorithm, Twadn, to align dynamic PPI networks based on a strategy of time warping. We compare Twadn with the existing dynamic network alignment algorithm DynaMAGNA++ and DynaWAVE and use area under the receiver operating characteristic curve and area under the precision-recall curve as evaluation indicators. The experimental results show that Twadn is superior to DynaMAGNA++ and DynaWAVE. In addition, we use protein interaction network of Drosophila to compare Twadn and the static network alignment algorithm NetCoffee2 and experimental results show that Twadn is able to capture timing information compared to NetCoffee2.

CONCLUSIONS

Twadn is a versatile and efficient alignment tool that can be applied to dynamic network. Hopefully, its application can benefit the research community in the fields of molecular function and evolution.

摘要

背景

网络比对是系统生物学中预测蛋白质功能和系统进化关系的有效计算框架。然而,现有的大多数比对方法都侧重于基于静态网络模型的蛋白质-蛋白质相互作用网络比对,而实际上这些网络在真实系统中是动态的。蛋白质-蛋白质相互作用网络的动态特性对于理解分子水平上的进化和调控机制至关重要,在动态网络中仍有很大的改进比对质量的空间。

结果

在本文中,我们提出了一种新的比对算法 Twadn,用于基于时间扭曲策略对齐动态蛋白质-蛋白质相互作用网络。我们将 Twadn 与现有的动态网络比对算法 DynaMAGNA++和 DynaWAVE 进行比较,并使用接收者操作特征曲线下面积和精度-召回曲线下面积作为评价指标。实验结果表明 Twadn 优于 DynaMAGNA++和 DynaWAVE。此外,我们使用果蝇的蛋白质相互作用网络将 Twadn 与静态网络比对算法 NetCoffee2 进行比较,实验结果表明 Twadn 能够比 NetCoffee2 捕获时间信息。

结论

Twadn 是一种通用且高效的比对工具,可应用于动态网络。希望它的应用能使分子功能和进化等领域的研究社区受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/535b/7495832/a9d4099d47ed/12859_2020_3672_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验