Department of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States.
Acc Chem Res. 2020 Oct 20;53(10):2425-2442. doi: 10.1021/acs.accounts.0c00482. Epub 2020 Sep 17.
Foldamers have defined and predictable structures, improved resistance to proteolytic degradation, enhanced chemical diversity, and are versatile in their mimicry of biological molecules, making them promising candidates in biomedical and material applications. However, as natural macromolecules exhibit endless folding structures and functions, the exploration of the applications of foldamers remains crucial. As such, it is imperative to continue to discover unnatural foldameric architectures with new frameworks and molecular scaffolds. To this end, we recently developed a new class of peptidomimetics termed ″γ-AApeptides", oligomers of γ-substituted--acylated--aminoethyl amino acids, which are inspired by the chiral peptide nucleic acid backbone. To date γ-AApeptides have been shown to be resistant to proteolytic degradation and possess limitless potential to introduce chemically diverse functional groups, demonstrating promise in biomedical and material sciences. However, the structures of γ-AApeptides were initially unknown, rendering their rational design for the mimicry of a protein helical domain impossible in the beginning, which limited their potential development. To our delight, in the past few years, we have obtained a series of crystal structures of helical sulfono-γ-AApeptides, a subclass of γ-AApeptides. The single-crystal X-ray crystallography indicates that sulfono-γ-AApeptides fold into unprecedented and well-defined helices with unique helical parameters. On the basis of the well-established size, shape, and folding conformation, the design of sulfono-γ-AApeptide-based foldamers opens a new avenue for the development of alternative unnatural peptidomimetics for their potential applications in chemistry, biology, medicine, materials science, and so on.In this Account, we will outline our journey on sulfono-γ-AApeptides and their application as helical mimetics. We will first briefly introduce the design and synthetic strategy of sulfono-γ-AApeptides and then describe the crystal structures of helical sulfono-γ-AApeptides, including left-handed homogeneous sulfono-γ-AApeptides, right-handed 1:1 α/sulfono-γ-AA peptide hybrids, and right-handed 2:1 α/sulfono-γ-AA peptide hybrids. After that, we will illustrate the potential of helical sulfono-γ-AApeptides for biological applications such as the disruption of medicinally relevant protein-protein interactions (PPIs) of BCL9-β-catenin and p53-MDM2/MDMX as well as the mimicry of glucagon-like peptide 1 (GLP-1). In addition, we also exemplify their potential application in material science. We expect that this Account will shed light on the structure-based design and function of helical sulfono-γ-AApeptides, which can provide a new and alternative way to explore and generate novel foldamers with distinctive structural and functional properties.
折叠物具有定义明确和可预测的结构、增强的抗蛋白水解降解能力、增强的化学多样性,并且能够灵活模拟生物分子,使其成为生物医学和材料应用中有前途的候选物。然而,由于天然大分子表现出无穷无尽的折叠结构和功能,因此探索折叠物的应用仍然至关重要。因此,必须继续发现具有新框架和分子支架的非天然折叠物结构。为此,我们最近开发了一类新的肽模拟物,称为“γ-AA 肽”,是γ-取代的酰化-氨基乙基氨基酸的低聚物,其灵感来自手性肽核酸骨架。迄今为止,γ-AA 肽已被证明具有抗蛋白水解降解的能力,并且具有引入化学多样性功能基团的无限潜力,在生物医学和材料科学领域具有广阔的应用前景。然而,γ-AA 肽的结构最初是未知的,这使得最初不可能对其进行合理设计以模拟蛋白质螺旋结构域,从而限制了它们的潜在发展。令我们高兴的是,在过去的几年中,我们获得了一系列螺旋磺酸基-γ-AA 肽的晶体结构,这是γ-AA 肽的一个子类。单晶 X 射线晶体学表明,磺酸基-γ-AA 肽折叠成具有独特螺旋参数的前所未有的明确定义的螺旋。基于已建立的大小、形状和折叠构象,磺酸基-γ-AA 肽为基于其的螺旋类似物的设计开辟了一条新途径,为其在化学、生物学、医学、材料科学等领域的潜在应用开发替代的非天然肽模拟物提供了可能。在本报告中,我们将概述我们在磺酸基-γ-AA 肽及其作为螺旋模拟物的应用方面的研究历程。我们将首先简要介绍磺酸基-γ-AA 肽的设计和合成策略,然后描述螺旋磺酸基-γ-AA 肽的晶体结构,包括左手均匀磺酸基-γ-AA 肽、右手 1:1α/磺酸基-γ-AA 肽杂种和右手 2:1α/磺酸基-γ-AA 肽杂种。之后,我们将说明螺旋磺酸基-γ-AA 肽在生物应用中的潜力,例如破坏与医学相关的 BCL9-β-连环蛋白和 p53-MDM2/MDMX 蛋白-蛋白相互作用以及模拟胰高血糖素样肽 1(GLP-1)。此外,我们还举例说明了它们在材料科学中的潜在应用。我们希望本报告能够阐明螺旋磺酸基-γ-AA 肽的基于结构的设计和功能,为探索和生成具有独特结构和功能特性的新型折叠物提供新的替代途径。