Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116011, China.
Chem Rev. 2021 Jan 27;121(2):567-648. doi: 10.1021/acs.chemrev.0c00495. Epub 2020 Sep 17.
Heterogeneous catalysis involves solid-state catalysts, among which metal nanoparticles occupy an important position. Unfortunately, no two nanoparticles from conventional synthesis are the same at the atomic level, though such regular nanoparticles can be highly uniform at the nanometer level (e.g., size distribution ∼5%). In the long pursuit of well-defined nanocatalysts, a recent success is the synthesis of atomically precise metal nanoclusters protected by ligands in the size range from tens to hundreds of metal atoms (equivalently 1-3 nm in core diameter). More importantly, such nanoclusters have been crystallographically characterized, just like the protein structures in enzyme catalysis. Such atomically precise metal nanoclusters merge the features of well-defined homogeneous catalysts (e.g., ligand-protected metal centers) and enzymes (e.g., protein-encapsulated metal clusters of a few atoms bridged by ligands). The well-defined nanoclusters with their total structures available constitute a new class of model catalysts and hold great promise in fundamental catalysis research, including the atomically precise size dependent activity, control of catalytic selectivity by metal structure and surface ligands, structure-property relationships at the atomic-level, insights into molecular activation and catalytic mechanisms, and the identification of active sites on nanocatalysts. This Review summarizes the progress in the utilization of atomically precise metal nanoclusters for catalysis. These nanocluster-based model catalysts have enabled heterogeneous catalysis research at the single-atom and single-electron levels. Future efforts are expected to achieve more exciting progress in fundamental understanding of the catalytic mechanisms, the tailoring of active sites at the atomic level, and the design of new catalysts with high selectivity and activity under mild conditions.
多相催化涉及固态催化剂,其中金属纳米粒子占据着重要地位。遗憾的是,尽管常规合成的纳米粒子在纳米尺度上可以高度均匀(例如,尺寸分布约为 5%),但没有两个原子级别的纳米粒子是完全相同的。在长期追求具有明确结构的纳米催化剂的过程中,最近的一个成功案例是合成了由配体保护的原子精确金属纳米团簇,其尺寸范围在几十到几百个金属原子之间(相当于核心直径 1-3nm)。更重要的是,这些纳米团簇已经通过晶体学进行了表征,就像酶催化中的蛋白质结构一样。这种原子精确的金属纳米团簇融合了明确的均相催化剂(例如,配体保护的金属中心)和酶(例如,由几个原子桥连的配体包裹的蛋白质包裹的金属团簇)的特点。具有完整结构的明确纳米团簇构成了一类新型的模型催化剂,在基础催化研究中具有很大的应用前景,包括原子精确的尺寸依赖性活性、通过金属结构和表面配体控制催化选择性、原子级别的结构-性能关系、对分子活化和催化机制的深入了解,以及纳米催化剂活性位的鉴定。这篇综述总结了利用原子精确的金属纳米团簇进行催化的进展。这些基于纳米团簇的模型催化剂使多相催化研究能够在单原子和单电子水平上进行。未来的努力有望在催化机制的基础理解、原子级别的活性位剪裁以及在温和条件下设计具有高选择性和活性的新型催化剂方面取得更令人兴奋的进展。