Xie Zhongshuai, Cui Zongyang, Shi Jiafeng, Lin Cheng, Zhang Kan, Yuan Guoliang, Liu Jun-Ming
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
Nanoscale. 2020 Sep 21;12(35):18446-18454. doi: 10.1039/d0nr02809f. Epub 2020 Sep 2.
Photoelectrochemical water splitting provides a promising strategy for converting solar energy into chemical fuels and has attracted extensive interest. Herein, BiMoO nanopillars with large surface areas were fabricated on an ITO-coated glass substrate and their photoelectrochemical properties are enhanced through appropriate manipulation of ferroelectric polarization. The BiMoO photoanode with polarization orientation toward ITO shows an enhanced photocurrent density of 250 μA cm at 1.23 V vs. reversible hydrogen electrode, which is 28% higher than that of pristine BiMoO nanopillars without macroscopic polarization. The corresponding depolarization electric field benefits the separation of light-excited electron-hole pairs, thus minimizing the recombination of charge carriers and further enhancing the photocurrent current density. Our work offers a new strategy of BiMoO-based photoelectrochemical devices with great potential of application in the conversion of solar energy into chemical fuels.
光电化学水分解为将太阳能转化为化学燃料提供了一种很有前景的策略,并引起了广泛关注。在此,在涂有ITO的玻璃基板上制备了具有大表面积的BiMoO纳米柱,并通过适当控制铁电极化来增强其光电化学性能。极化方向朝向ITO的BiMoO光阳极在相对于可逆氢电极1.23 V时显示出增强的光电流密度250 μA cm,比没有宏观极化的原始BiMoO纳米柱高28%。相应的去极化电场有利于光激发电子-空穴对的分离,从而使电荷载流子的复合最小化,并进一步提高光电流密度。我们的工作为基于BiMoO的光电化学器件提供了一种新策略,在将太阳能转化为化学燃料方面具有巨大的应用潜力。