Bramburger Jason J, Dylewsky Daniel, Kutz J Nathan
Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
Phys Rev E. 2020 Aug;102(2-1):022204. doi: 10.1103/PhysRevE.102.022204.
Multiscale phenomena that evolve on multiple distinct timescales are prevalent throughout the sciences. It is often the case that the governing equations of the persistent and approximately periodic fast scales are prescribed, while the emergent slow scale evolution is unknown. Yet the course-grained, slow scale dynamics is often of greatest interest in practice. In this work we present an accurate and efficient method for extracting the slow timescale dynamics from signals exhibiting multiple timescales that are amenable to averaging. The method relies on tracking the signal at evenly spaced intervals with length given by the period of the fast timescale, which is discovered by using clustering techniques in conjunction with the dynamic mode decomposition. Sparse regression techniques are then used to discover a mapping which describes iterations from one data point to the next. We show that, for sufficiently disparate timescales, this discovered mapping can be used to discover the continuous-time slow dynamics, thus providing a novel tool for extracting dynamics on multiple timescales.
在多个不同时间尺度上演变的多尺度现象在整个科学领域都很普遍。通常情况下,持久且近似周期性的快速尺度的控制方程是给定的,而新兴的缓慢尺度演化是未知的。然而,在实际应用中,粗粒度的缓慢尺度动力学往往是最受关注的。在这项工作中,我们提出了一种准确且高效的方法,用于从表现出多个适合平均的时间尺度的信号中提取缓慢时间尺度动力学。该方法依赖于以快速时间尺度的周期给出的长度,在均匀间隔处跟踪信号,这是通过结合动态模式分解使用聚类技术发现的。然后使用稀疏回归技术来发现一个描述从一个数据点到下一个数据点迭代的映射。我们表明,对于足够不同的时间尺度,这个发现的映射可用于发现连续时间的缓慢动力学,从而为提取多个时间尺度上的动力学提供了一种新颖的工具。