Suppr超能文献

多尺度非线性物理学的动态模式分解

Dynamic mode decomposition for multiscale nonlinear physics.

作者信息

Dylewsky Daniel, Tao Molei, Kutz J Nathan

机构信息

Department of Physics, University of Washington, Seattle, Washington 98195, USA.

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.

出版信息

Phys Rev E. 2019 Jun;99(6-1):063311. doi: 10.1103/PhysRevE.99.063311.

Abstract

We present a data-driven method for separating complex, multiscale systems into their constituent timescale components using a recursive implementation of dynamic mode decomposition (DMD). Local linear models are built from windowed subsets of the data, and dominant timescales are discovered using spectral clustering on their eigenvalues. This approach produces time series data for each identified component, which sum to a faithful reconstruction of the input signal. It differs from most other methods in the field of multiresolution analysis (MRA) in that it (1) accounts for spatial and temporal coherencies simultaneously, making it more robust to scale overlap between components, and (2) yields a closed-form expression for local dynamics at each scale, which can be used for short-term prediction of any or all components. Our technique is an extension of multi-resolution dynamic mode decomposition (mrDMD), generalized to treat a broader variety of multiscale systems and more faithfully reconstruct their isolated components. In this paper we present an overview of our algorithm and its results on two example physical systems, and briefly discuss some advantages and potential forecasting applications for the technique.

摘要

我们提出了一种数据驱动的方法,通过动态模态分解(DMD)的递归实现,将复杂的多尺度系统分离为其组成的时间尺度成分。局部线性模型是根据数据的窗口子集构建的,并且通过对其特征值进行谱聚类来发现主导时间尺度。这种方法为每个识别出的成分生成时间序列数据,这些数据之和能够忠实地重构输入信号。它与多分辨率分析(MRA)领域中的大多数其他方法不同,因为它(1)同时考虑了空间和时间相干性,使其对成分之间的尺度重叠更具鲁棒性,并且(2)为每个尺度的局部动力学给出了一个封闭形式的表达式,可用于对任何或所有成分进行短期预测。我们的技术是多分辨率动态模态分解(mrDMD)的扩展,经过推广可处理更广泛的多尺度系统,并更忠实地重构其孤立成分。在本文中,我们概述了我们的算法及其在两个示例物理系统上的结果,并简要讨论了该技术的一些优点和潜在的预测应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验