Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Departamento de Física, FCEyN, Universidad Nacional de Mar del Plata, CONICET, Déan Funes 3350, 7600 Mar del Plata, Argentina.
Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Departamento de Física, FCEyN, Universidad Nacional de Mar del Plata, CONICET, Déan Funes 3350, 7600 Mar del Plata, Argentina and Physics Department, Boston University, 590 Commonwealth Ave., Boston, Massachusetts 02215, USA.
Phys Rev E. 2020 Aug;102(2-1):022310. doi: 10.1103/PhysRevE.102.022310.
The frequent emergence of diseases with the potential to become threats at local and global scales, such as influenza A(H1N1), SARS, MERS, and recently COVID-19 disease, makes it crucial to keep designing models of disease propagation and strategies to prevent or mitigate their effects in populations. Since isolated systems are exceptionally rare to find in any context, especially in human contact networks, here we examine the susceptible-infected-recovered model of disease spreading in a multiplex network formed by two distinct networks or layers, interconnected through a fraction q of shared individuals (overlap). We model the interactions through weighted networks, because person-to-person interactions are diverse (or disordered); weights represent the contact times of the interactions. Using branching theory supported by simulations, we analyze a social distancing strategy that reduces the average contact time in both layers, where the intensity of the distancing is related to the topology of the layers. We find that the critical values of the distancing intensities, above which an epidemic can be prevented, increase with the overlap q. Also we study the effect of the social distancing on the mutual giant component of susceptible individuals, which is crucial to keep the functionality of the system. In addition, we find that for relatively small values of the overlap q, social distancing policies might not be needed at all to maintain the functionality of the system.
由于具有潜在威胁的疾病(如甲型流感 H1N1、SARS、MERS 以及最近的 COVID-19 疾病)经常在地方和全球范围内出现,因此设计疾病传播模型和预防或减轻其对人群影响的策略至关重要。由于在任何情况下都非常罕见的孤立系统,特别是在人类接触网络中,因此我们在这里研究了通过两个不同的网络或层组成的复合格子网络中易感染-感染-恢复疾病传播模型,通过共享个体的分数 q(重叠)相互连接。我们通过加权网络对相互作用进行建模,因为人与人之间的相互作用是多样的(或无序的);权重代表相互作用的接触时间。我们使用分支理论和模拟进行分析,提出了一种社交隔离策略,该策略可以减少两个层中的平均接触时间,其中隔离的强度与层的拓扑结构有关。我们发现,在可以预防流行病的隔离强度的临界值之上,随着重叠 q 的增加而增加。我们还研究了社交隔离对易感染个体的相互巨型组件的影响,这对于保持系统的功能至关重要。此外,我们发现,对于重叠 q 的较小值,根本不需要社交隔离政策即可维持系统的功能。