文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

信息传播与行为反应对疫情动态的影响:多层网络分析

Impact of information dissemination and behavioural responses on epidemic dynamics: A multi-layer network analysis.

作者信息

Shi Congjie, Ferreira Silvio C, Maia Hugo P, Moghadas Seyed M

机构信息

Agent-Based Modelling Laboratory, York University, Toronto, Ontario, M3J 1P3, Canada.

Departamento de Física, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.

出版信息

Infect Dis Model. 2025 Apr 16;10(3):960-978. doi: 10.1016/j.idm.2025.04.004. eCollection 2025 Sep.


DOI:10.1016/j.idm.2025.04.004
PMID:40487767
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12143627/
Abstract

Network models adeptly capture heterogeneities in individual interactions, making them well-suited for describing a wide range of real-world and virtual connections, including information diffusion, behavioural tendencies, and disease dynamic fluctuations. However, there is a notable methodological gap in existing studies examining the interplay between physical and virtual interactions and the impact of information dissemination and behavioural responses on disease propagation. We constructed a three-layer (information, cognition, and epidemic) network model to investigate the adoption of protective behaviours, such as wearing masks or practising social distancing, influenced by the diffusion and correction of misinformation. We examined five key events influencing the rate of information spread: (i) rumour transmission, (ii) information suppression, (iii) renewed interest in spreading misinformation, (iv) correction of misinformation, and (v) relapse to a stifler state after correction. We found that adopting information-based protection behaviours is more effective in mitigating disease spread than protection adoption induced by neighbourhood interactions. Specifically, our results show that warning and educating individuals to counter misinformation within the information network is a more effective strategy for curbing disease spread than suspending gossip spreaders from the network. Our study has practical implications for developing strategies to mitigate the impact of misinformation and enhance protective behavioural responses during disease outbreaks.

摘要

网络模型能够巧妙地捕捉个体互动中的异质性,使其非常适合描述广泛的现实世界和虚拟连接,包括信息传播、行为倾向和疾病动态波动。然而,在现有研究中,考察物理和虚拟互动之间的相互作用以及信息传播和行为反应对疾病传播的影响时,存在显著的方法学差距。我们构建了一个三层(信息、认知和疫情)网络模型,以研究诸如佩戴口罩或保持社交距离等保护行为的采用情况,这些行为受到错误信息传播和纠正的影响。我们考察了影响信息传播速度的五个关键事件:(i)谣言传播,(ii)信息抑制,(iii)对传播错误信息的重新关注,(iv)错误信息的纠正,以及(v)纠正后恢复到抑制状态。我们发现,采用基于信息的保护行为在减轻疾病传播方面比邻里互动引发的保护行为采用更为有效。具体而言,我们的结果表明,在信息网络中警告和教育个体以对抗错误信息,是比将谣言传播者从网络中剔除更为有效的遏制疾病传播的策略。我们的研究对于制定策略以减轻错误信息的影响并在疾病爆发期间增强保护行为反应具有实际意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/f86ea57c2b6e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/57747a8d6bcc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/dda56bfbbf40/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/5a80f20e409b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/1466a6939878/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/ad34b26192dd/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/43b228a5e219/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/5894ef139583/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/a95802593694/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/f86ea57c2b6e/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/57747a8d6bcc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/dda56bfbbf40/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/5a80f20e409b/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/1466a6939878/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/ad34b26192dd/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/43b228a5e219/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/5894ef139583/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/a95802593694/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc13/12143627/f86ea57c2b6e/gr9.jpg

相似文献

[1]
Impact of information dissemination and behavioural responses on epidemic dynamics: A multi-layer network analysis.

Infect Dis Model. 2025-4-16

[2]
Impact of self-imposed prevention measures and short-term government-imposed social distancing on mitigating and delaying a COVID-19 epidemic: A modelling study.

PLoS Med. 2020-7-21

[3]
Epidemic spread dynamics in multilayer networks: Probing the impact of information outbreaks and reception games.

Chaos. 2025-3-1

[4]
Influenza epidemic model using dynamic social networks of individuals with cognition maps.

MethodsX. 2020-8-19

[5]
Impact of simplicial complexes on epidemic spreading in partially mapping activity-driven multiplex networks.

Chaos. 2023-6-1

[6]
Coevolving spreading dynamics of negative information and epidemic on multiplex networks.

Nonlinear Dyn. 2022

[7]
Psychological and psychosocial determinants of COVID Health Related Behaviours (COHeRe): An evidence and gap map.

Campbell Syst Rev. 2023-6-22

[8]
Information and Knowledge Diffusion Dynamics in Complex Networks with Independent Spreaders.

Entropy (Basel). 2025-2-24

[9]
Epidemic modeling for misinformation spread in digital networks through a social intelligence approach.

Sci Rep. 2024-8-17

[10]
The impact of nodes of information dissemination on epidemic spreading in dynamic multiplex networks.

Chaos. 2023-4-1

本文引用的文献

[1]
Impact of Covid -19 incidence rate and government-initiated risk communication measures on individual's NPI practices.

PLoS One. 2024

[2]
Assessing community-level impacts of and responses to stay at home orders: The King County COVID-19 community study.

PLoS One. 2024

[3]
Minimizing outbreak through targeted blocking for disease control: a community-based approach using super-spreader node identification.

Sci Rep. 2023-8-30

[4]
Effectiveness of communications in enhancing adherence to public health behavioural interventions: a COVID-19 evidence review.

Philos Trans A Math Phys Eng Sci. 2023-10-9

[5]
Distinguishing Simple and Complex Contagion Processes on Networks.

Phys Rev Lett. 2023-6-16

[6]
Information-epidemic co-evolution propagation under policy intervention in multiplex networks.

Nonlinear Dyn. 2023-6-8

[7]
The impact of threshold decision mechanisms of collective behavior on disease spread.

Proc Natl Acad Sci U S A. 2023-5-9

[8]
The impact of nodes of information dissemination on epidemic spreading in dynamic multiplex networks.

Chaos. 2023-4-1

[9]
Effectiveness of behavioural interventions to influence COVID-19 outcomes: A scoping review.

Prev Med. 2023-7

[10]
Higher-order interactions shape collective dynamics differently in hypergraphs and simplicial complexes.

Nat Commun. 2023-3-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索