Birdee Kiran, Hu Shiyu, Gao Jun
Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada.
ACS Appl Mater Interfaces. 2020 Oct 14;12(41):46381-46389. doi: 10.1021/acsami.0c13569. Epub 2020 Oct 1.
Bilayer light-emitting electrochemical cells are demonstrated with a top conjugated polymer (CP) emitting layer and a solid polymer electrolyte (SPE) underlayer. Fast, long-range ion transport through the planar CP/SPE interface leads to doping and junction electroluminescence in the CP layer. All bilayer cells have pairs of aluminum electrodes separated by 2 or 11 mm at their inner edges, creating the largest planar (lateral) cells that can be imaged with excellent temporal and spatial resolutions. To understand how electrochemical doping occurs in the CP layer without any ionic species mixed in, the planar bilayer cells are investigated for different CPs, CP layer thickness, operating voltage, and operating temperature. The bilayer cells are much faster to turn on than control cells made from a single mixed CP/SPE layer. The cell current and the doping propagation speed exhibit a linear dependence on the operating voltage and an Arrhenius-type temperature dependence. Unexpectedly, long-range ion transport in the CP layer and across the CP/SPE interface does not impede the doping reactions. Instead, the doping reactions are limited by the bulk resistance of the extra-wide SPE underlayer. In bilayer cells with a thin red-emitting CP layer, ion transport and doping reactions can penetrate the entire CP layer in the vertical direction. In thicker MEH-PPV or the blue-emitting cells, the doping did not reach the top of the CP layer. This led to broadened emitting junctions and/or unexpected junction locations. The bilayer LECs offer unique opportunities to investigate the ion transport in pristine CPs, the CP/SPE interface, and the SPE using highly sensitive and reliable imaging techniques. Removing the inert electrolyte polymer from the semiconducting CP can potentially lead to high-performance electrochemical light-emitting/photovoltaic cells or transistors.
展示了一种双层发光电化学电池,其顶层为共轭聚合物(CP)发光层,底层为固体聚合物电解质(SPE)。通过平面CP/SPE界面的快速、长程离子传输导致CP层中的掺杂和结电致发光。所有双层电池在其内边缘都有一对铝电极,电极间距为2或11毫米,形成了最大的平面(横向)电池,能够以优异的时间和空间分辨率进行成像。为了理解在没有任何离子物种混入的情况下CP层中是如何发生电化学掺杂的,对平面双层电池进行了研究,考察了不同的CP、CP层厚度、工作电压和工作温度。双层电池比由单一混合CP/SPE层制成的对照电池开启速度快得多。电池电流和掺杂传播速度对工作电压呈线性依赖关系,对温度呈阿伦尼乌斯型依赖关系。出乎意料的是,CP层内以及跨CP/SPE界面的长程离子传输并不妨碍掺杂反应。相反,掺杂反应受超宽SPE底层的体电阻限制。在具有薄红色发光CP层的双层电池中,离子传输和掺杂反应可以在垂直方向穿透整个CP层。在较厚的MEH-PPV或蓝色发光电池中,掺杂未到达CP层顶部。这导致发射结变宽和/或结位置意外。双层发光电化学电池提供了独特的机会,可利用高度灵敏和可靠的成像技术研究原始CP中的离子传输、CP/SPE界面以及SPE。从半导体CP中去除惰性电解质聚合物可能会导致高性能的电化学发光/光伏电池或晶体管。