Quillen Alice C, Lane Mckenzie, Nakajima Miki, Wright Esteban
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 USA.
School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332 USA.
Icarus. 2020 Apr;340. doi: 10.1016/j.icarus.2020.113641. Epub 2020 Jan 13.
Mass-spring model simulations are used to investigate past spin states of a viscoelastic Phobos and Deimos. From an initially tidally locked state, we find crossing of a spin-orbit resonance with Mars or a mean motion resonance with each other does not excite tumbling in Phobos or Deimos. However, once tumbling our simulations show that these moons can remain so for an extended period and during this time their orbital eccentricity can be substantially reduced. We attribute the tendency for simulations of an initially tumbling viscoelastic body to drop into spin-synchronous state at very low eccentricity to the insensitivity of the tumbling chaotic zone volume to eccentricity. After a tumbling body enters the spin synchronous resonance, it can exhibit long lived non-principal axis rotation and this too can prolong the period of time with enhanced tidally generated energy dissipation. The low orbital eccentricities of Phobos and Deimos could in part be due to spin excitation by nearly catastrophic impacts rather than tidal evolution following orbital resonance excitation.
质量 - 弹簧模型模拟被用于研究具有粘弹性的火卫一和火卫二过去的自转状态。从初始的潮汐锁定状态开始,我们发现火卫一或火卫二与火星的自旋 - 轨道共振交叉或它们彼此之间的平均运动共振并不会激发其翻滚。然而,一旦开始翻滚,我们的模拟显示这些卫星可以在很长一段时间内保持这种状态,在此期间它们的轨道偏心率会大幅降低。我们将最初翻滚的粘弹性天体模拟倾向于在非常低的偏心率下进入自旋同步状态的原因归结为翻滚混沌区体积对偏心率不敏感。一个翻滚的天体进入自旋同步共振后,它可以表现出长期的非主轴旋转,这也可以延长因潮汐产生的能量耗散增强的时间段。火卫一和火卫二较低的轨道偏心率可能部分是由于近乎灾难性撞击引起的自旋激发,而非轨道共振激发后的潮汐演化。