Liu Wen-Hsin, Mrozek-Gorska Paulina, Wirth Anna-Katharina, Herold Tobias, Schwarzkopf Larissa, Pich Dagmar, Völse Kerstin, Melo-Narváez M Camila, Carlet Michela, Hammerschmidt Wolfgang, Jeremias Irmela
Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Marchioninistraße 25, 81377 Munich, Germany.
Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Munich, Germany.
Biomark Res. 2020 Sep 16;8:46. doi: 10.1186/s40364-020-00226-z. eCollection 2020.
Clinically relevant methods are not available that prioritize and validate potential therapeutic targets for individual tumors, from the vast amount of tumor descriptive expression data.
We established inducible transgene expression in clinically relevant patient-derived xenograft (PDX) models in vivo to fill this gap.
With this technique at hand, we analyzed the role of the transcription factor Krüppel-like factor 4 (KLF4) in B-cell acute lymphoblastic leukemia (B-ALL) PDX models at different disease stages. In competitive preclinical in vivo trials, we found that re-expression of wild type KLF4 reduced the leukemia load in PDX models of B-ALL, with the strongest effects being observed after conventional chemotherapy in minimal residual disease (MRD). A nonfunctional KLF4 mutant had no effect on this model. The re-expression of KLF4 sensitized tumor cells in the PDX model towards systemic chemotherapy in vivo. It is of major translational relevance that azacitidine upregulated KLF4 levels in the PDX model and a KLF4 knockout reduced azacitidine-induced cell death, suggesting that azacitidine can regulate KLF4 re-expression. These results support the application of azacitidine in patients with B-ALL as a therapeutic option to regulate KLF4.
Genetic engineering of PDX models allows the examination of the function of dysregulated genes like KLF4 in a highly clinically relevant translational context, and it also enables the selection of therapeutic targets in individual tumors and links their functions to clinically available drugs, which will facilitate personalized treatment in the future.
从大量肿瘤描述性表达数据中,尚无临床相关方法可对个体肿瘤的潜在治疗靶点进行优先级排序和验证。
我们在临床相关的患者来源异种移植(PDX)体内模型中建立了诱导型转基因表达,以填补这一空白。
利用这项技术,我们分析了转录因子Krüppel样因子4(KLF4)在不同疾病阶段的B细胞急性淋巴细胞白血病(B-ALL)PDX模型中的作用。在竞争性临床前体内试验中,我们发现野生型KLF4的重新表达降低了B-ALL的PDX模型中的白血病负荷,在最小残留病(MRD)阶段常规化疗后观察到最强的效果。无功能的KLF4突变体对该模型没有影响。KLF4的重新表达使PDX模型中的肿瘤细胞在体内对全身化疗敏感。阿扎胞苷在PDX模型中上调KLF4水平,而KLF4基因敲除降低了阿扎胞苷诱导的细胞死亡,这具有重要的转化意义,表明阿扎胞苷可以调节KLF4的重新表达。这些结果支持将阿扎胞苷应用于B-ALL患者作为调节KLF4的治疗选择。
PDX模型的基因工程允许在高度临床相关的转化背景下检查KLF4等失调基因的功能,还能够在个体肿瘤中选择治疗靶点,并将其功能与临床可用药物联系起来,这将有助于未来的个性化治疗。