Panda J, Ramu M, Karis Olof, Sarkar Tapati, Kamalakar M Venkata
Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
ACS Nano. 2020 Oct 27;14(10):12771-12780. doi: 10.1021/acsnano.0c03376. Epub 2020 Oct 5.
Establishing ultimate spin current efficiency in graphene over industry-standard substrates can facilitate research and development exploration of spin current functions and spin sensing. At the same time, it can resolve core issues in spin relaxation physics while addressing the skepticism of graphene's practicality for planar spintronic applications. In this work, we reveal an exceptionally long spin communication capability of 45 μm and highest to date spin diffusion length of 13.6 μm in graphene on SiO/Si at room temperature. Employing commercial chemical vapor deposited (CVD) graphene, we show how contact-induced surface charge transfer doping and device doping contributions, as well as spin relaxation, can be quenched in extremely long spin channels and thereby enable unexpectedly long spin diffusion lengths in polycrystalline CVD graphene. Extensive experiments show enhanced spin transport and precession in multiple longest channels (36 and 45 μm) that reveal the highest spin lifetime of ∼2.5-3.5 ns in graphene over SiO/Si, even under ambient conditions. Such performance, made possible due to our devices approaching the intrinsic spin-orbit coupling of ∼20 μeV in graphene, reveals the role of the D'yakonov-Perel' spin relaxation mechanism in graphene channels as well as contact regions. Our record demonstration, fresh device engineering, and spin relaxation insights unlock the ultimate spin current capabilities of graphene on SiO/Si, while the robust high performance of commercial CVD graphene can proliferate research and development of innovative spin sensors and spin computing circuits.
在工业标准衬底上实现石墨烯中的终极自旋电流效率,有助于自旋电流功能和自旋传感的研发探索。同时,它可以解决自旋弛豫物理中的核心问题,同时消除人们对石墨烯在平面自旋电子学应用中实用性的质疑。在这项工作中,我们揭示了室温下在SiO/Si上的石墨烯中,自旋通信能力异常长,达到45μm,自旋扩散长度最高,达到13.6μm。采用商业化学气相沉积(CVD)石墨烯,我们展示了在极长的自旋通道中,接触诱导的表面电荷转移掺杂和器件掺杂贡献以及自旋弛豫如何被淬灭,从而在多晶CVD石墨烯中实现了出乎意料的长自旋扩散长度。大量实验表明,在多个最长通道(36μm和45μm)中,自旋传输和进动增强,这表明即使在环境条件下,SiO/Si上的石墨烯中自旋寿命最高可达约2.5 - 3.5 ns。由于我们的器件接近石墨烯中约20μeV的本征自旋 - 轨道耦合,这种性能得以实现,揭示了D'yakonov - Perel'自旋弛豫机制在石墨烯通道以及接触区域中的作用。我们创纪录的演示、新颖的器件工程和自旋弛豫见解,解锁了SiO/Si上石墨烯的终极自旋电流能力,而商业CVD石墨烯的强大高性能可以推动创新自旋传感器和自旋计算电路的研发。