Suppr超能文献

一种蛋白质序列选择方法,可实现具有独特酶学性质的人工 l-苏氨酸 3-脱氢酶的完全共识设计。

Protein Sequence Selection Method That Enables Full Consensus Design of Artificial l-Threonine 3-Dehydrogenases with Unique Enzymatic Properties.

机构信息

Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.

Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.

出版信息

Biochemistry. 2020 Oct 13;59(40):3823-3833. doi: 10.1021/acs.biochem.0c00570. Epub 2020 Sep 25.

Abstract

Exponentially increasing protein sequence data enables artificial enzyme design using sequence-based protein design methods, including full-consensus protein design (FCD). The success of artificial enzyme design is strongly dependent on the nature of the sequences used. Hence, sequences must be selected from databases and curated libraries prepared to enable a successful design by FCD. In this study, we proposed a selection approach regarding several key residues as sequence motifs. We used l-threonine 3-dehydrogenase (TDH) as a model to test the validity of this approach. In the classification, four residues (143, 174, 188, and 214) were used as key residues. We classified thousands of TDH homologous sequences into five groups containing hundreds of sequences. Utilizing sequences in the libraries, we designed five artificial TDHs by FCD. Among the five, we successfully expressed four in soluble form. Biochemical analysis of artificial TDHs indicated that their enzymatic properties vary; half of the maximum measured enzyme activity () and activation energies were distributed from 53 to 65 °C and from 38 to 125 kJ/mol, respectively. The artificial TDHs had unique kinetic parameters, distinct from one another. Structural analysis indicates that consensus mutations are mainly introduced in the secondary or outer shell. The functional diversity of the artificial TDHs is due to the accumulation of mutations that affect their physicochemical properties. Taken together, our findings indicate that our proposed approach can help generate artificial enzymes with unique enzymatic properties.

摘要

蛋白质序列数据呈指数级增长,使得使用基于序列的蛋白质设计方法(包括全共识蛋白质设计(FCD))进行人工酶设计成为可能。人工酶设计的成功强烈依赖于所使用序列的性质。因此,序列必须从数据库中选择,并对准备好的 curated 库进行编目,以通过 FCD 实现成功的设计。在这项研究中,我们提出了一种针对几个关键残基作为序列基序的选择方法。我们使用 l-苏氨酸 3-脱氢酶(TDH)作为模型来测试该方法的有效性。在分类中,使用四个残基(143、174、188 和 214)作为关键残基。我们将数千个 TDH 同源序列分类为包含数百个序列的五个组。利用库中的序列,我们通过 FCD 设计了五个人工 TDH。在这五个中,我们成功地以可溶形式表达了四个。人工 TDH 的生化分析表明,它们的酶学性质各不相同;最大测量酶活性的一半()和活化能分别分布在 53 到 65°C 和 38 到 125 kJ/mol 之间。人工 TDH 具有独特的动力学参数,彼此不同。结构分析表明,共识突变主要引入在二级或外壳中。人工 TDH 的功能多样性是由于影响其理化性质的突变积累所致。总之,我们的研究结果表明,我们提出的方法可以帮助生成具有独特酶学性质的人工酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验