Wallentine Spencer, Bandaranayake Savini, Biswas Somnath, Baker L Robert
Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.
J Phys Chem Lett. 2020 Oct 1;11(19):8307-8313. doi: 10.1021/acs.jpclett.0c02628. Epub 2020 Sep 18.
Directly observing active surface intermediates represents a major challenge in electrocatalysis, especially for CO electroreduction on Au. We use in-situ, plasmon-enhanced vibrational sum frequency generation spectroscopy, which has detection limits of <1% of a monolayer and can access the Au/electrolyte interface during active electrocatalysis in the absence of mass transport limitations. Measuring the potential-dependent surface coverage of atop CO confirms that the rate-determining step for this reaction is CO adsorption. An analysis of the interfacial electric field reveals the formation of a dense cation layer at the electrode surface, which is correlated to the onset of CO production. The Tafel slope increases in conjunction with the field saturation due to active site blocking by adsorbed cations. These findings show that CO reduction is extremely sensitive to the potential-dependent structure of the electrochemical double layer and provides direct observation of the interfacial processes that govern these kinetics.
直接观察活性表面中间体是电催化领域的一项重大挑战,尤其是对于金表面的一氧化碳电还原反应。我们采用原位等离激元增强振动和频产生光谱技术,该技术的检测限低至单层的<1%,并且能够在不存在传质限制的活性电催化过程中探测金/电解质界面。测量顶位吸附一氧化碳的电位依赖表面覆盖度证实,该反应的速率决定步骤是一氧化碳的吸附。对界面电场的分析揭示了电极表面致密阳离子层的形成,这与一氧化碳生成的起始相关。由于吸附阳离子对活性位点的阻塞,塔菲尔斜率随着电场饱和而增大。这些发现表明,一氧化碳还原对电化学双层的电位依赖结构极其敏感,并提供了对控制这些动力学的界面过程的直接观察。