Jang Hansaem, O'Brien Ciarán, Hill Nathaniel J D, Gardner Adrian M, Scivetti Ivan, Teobaldi Gilberto, Cowan Alexander J
Stephenson Institute for Renewable Energy (SIRE) and the Department of Chemistry, University of Liverpool, Liverpool L69 7ZF, United Kingdom.
Scientific Computing Department, Rutherford Appleton Laboratory, STFC UKRI, Harwell Campus, Didcot OX11 0QX, United Kingdom.
ACS Catal. 2025 Jun 18;15(13):11452-11462. doi: 10.1021/acscatal.5c02785. eCollection 2025 Jul 4.
Extensive research efforts have been concentrated into the conversion of CO into value-added chemicals as it provides a route to a circular carbon economy. Electroreduction of CO on Au surfaces allows for the selective transformation of CO into CO via carbon dioxide reduction reaction (CORR), and the catalytic activity depends on the concentration and identity of cations present at the electrode-electrolyte interface. Experimental reports performed under typical CORR-operating conditions have widely shown that the CORR is enabled by the presence of metal or organic cations in the cathodic interfacial microenvironment. A remaining question is to address if CORR can occur in the absence of metal or organic cations and, if so, what the mechanism may be. Here, we show that CO can be electrochemically reduced to CO on Au in acidic electrolytes rigorously controlled to avoid the presence of metal and organic cations and systematically suggest the important contributions allowing this reaction to proceed. The formation of CO is confirmed by both qualitative and quantitative methods using potentiodynamic CO-stripping scans and chromatography-assisted constant potential electrolysis. Calculations indicate that HO is able to stabilize the formation of *CO , albeit at more negative potentials than when an alkali metal cation is present. Spectroelectrochemical experiments show that the electric field at the interface is reduced when metal cations are not added, indicating that the decreased field stabilization of intermediates could play an important role in increased overpotential required for the CORR to occur.
大量的研究工作都集中在将一氧化碳转化为增值化学品上,因为这为循环碳经济提供了一条途径。在金表面上对一氧化碳进行电还原,可以通过二氧化碳还原反应(CORR)将一氧化碳选择性地转化为一氧化碳,并且催化活性取决于电极 - 电解质界面处存在的阳离子的浓度和种类。在典型的CORR操作条件下进行的实验报告广泛表明,阴极界面微环境中金属或有机阳离子的存在使得CORR得以发生。一个悬而未决的问题是,在没有金属或有机阳离子的情况下CORR是否会发生,如果会发生,其机制可能是什么。在这里,我们表明,在严格控制以避免金属和有机阳离子存在的酸性电解质中,一氧化碳可以在金上被电化学还原为一氧化碳,并系统地提出了使该反应得以进行的重要因素。通过使用动电位一氧化碳溶出扫描和色谱辅助恒电位电解的定性和定量方法,证实了一氧化碳的形成。计算表明,羟基能够稳定*CO的形成,尽管所需电位比存在碱金属阳离子时更负。光谱电化学实验表明,不添加金属阳离子时界面处的电场会降低,这表明中间体的电场稳定作用降低可能在CORR发生所需的过电位增加中起重要作用。