Suppr超能文献

人类和小鼠推理思维的神经计算。

Neuronal Computation Underlying Inferential Reasoning in Humans and Mice.

机构信息

Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK.

Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.

出版信息

Cell. 2020 Oct 1;183(1):228-243.e21. doi: 10.1016/j.cell.2020.08.035. Epub 2020 Sep 17.

Abstract

Every day we make decisions critical for adaptation and survival. We repeat actions with known consequences. But we also draw on loosely related events to infer and imagine the outcome of entirely novel choices. These inferential decisions are thought to engage a number of brain regions; however, the underlying neuronal computation remains unknown. Here, we use a multi-day cross-species approach in humans and mice to report the functional anatomy and neuronal computation underlying inferential decisions. We show that during successful inference, the mammalian brain uses a hippocampal prospective code to forecast temporally structured learned associations. Moreover, during resting behavior, coactivation of hippocampal cells in sharp-wave/ripples represent inferred relationships that include reward, thereby "joining-the-dots" between events that have not been observed together but lead to profitable outcomes. Computing mnemonic links in this manner may provide an important mechanism to build a cognitive map that stretches beyond direct experience, thus supporting flexible behavior.

摘要

我们每天都要做出对适应和生存至关重要的决策。我们重复着有已知结果的行动。但我们也利用松散相关的事件来推断和想象全新选择的结果。人们认为这些推理决策涉及到许多大脑区域;然而,潜在的神经元计算仍然未知。在这里,我们使用了人类和小鼠多日的跨物种方法,报告了推理决策背后的功能解剖和神经元计算。我们表明,在成功的推理过程中,哺乳动物大脑使用海马体的前瞻性编码来预测具有时间结构的习得关联。此外,在休息时,尖峰/涟漪中海马体细胞的共同激活代表了包括奖励在内的推断关系,从而在没有一起观察到但会带来有利结果的事件之间“连线成图”。以这种方式计算记忆链接可能提供了一个重要的机制,来构建一个超越直接经验的认知图,从而支持灵活的行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/664b/7538704/6bfdd8ea2cda/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验