Suppr超能文献

Interactions of arterial cells. Studies on the mechanisms of endothelial cell modulation of cholesterol metabolism in co-cultured smooth muscle cells.

作者信息

Hajjar D P, Marcus A J, Hajjar K A

出版信息

J Biol Chem. 1987 May 25;262(15):6976-81.

PMID:3294823
Abstract

Fluid phase interactions between arterial endothelial cells (EC) and smooth muscle cells (SMC) have been studied in vitro to assess the regulation of lipid metabolism in SMC (Hajjar, D. P., Falcone, D. J., Amberson, J. B., and Hefton, J. M. (1985) J. Lipid Res. 26, 1212-1223; Davies, P. F., Truskey, G. A., Warren, H. B., O'Connor, S. E., and Eisenhaure, B. H. (1985) J. Cell Biol. 101, 871-879). To identify EC-derived agonists which may modulate cholesterol metabolism in co-cultured SMC, we assessed the role of EC-derived eicosanoids and platelet-derived growth factor (PDGF) in the regulation of cholesteryl ester (CE) hydrolysis in SMC. The major eicosanoids synthesized by EC include PGI2 and 12-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE) and, to a lesser extent, prostaglandin E2. Exogenously added PGI2 and 12-HETE stimulated CE hydrolytic activity in SMC by 49 and 35%, respectively, when co-cultured with aspirin-treated EC. Aspirin-treated EC when co-cultured with SMC did not stimulate CE hydrolytic activity in SMC, as was the case with non-aspirin-treated EC, suggesting a role of eicosanoids in the regulation of cholesterol metabolism. Other humoral agents derived from EC such as PDGFc stimulated CE hydrolytic activity almost 2-fold in SMC cultured alone or co-cultured with EC. Aspirin-treated EC, incubated with 10 ng/ml PDGF, did not stimulate CE hydrolytic activity in co-cultured SMC. These results suggest that growth factor-promoting activity may enhance CE hydrolysis via the PGI2-cyclic AMP-CE hydrolysis cascade. This hypothesis supports our observations that PDGF stimulates PGI2 production in SMC. Elevated PGI2, in turn, can stimulate CE hydrolysis in these cells. Our findings suggest that the regulation of cholesterol metabolism in SMC can involve, at least in part, growth factors and EC-derived eicosanoids. These may play a central role in the regulation of hemostasis and the inflammatory response.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验