Suppr超能文献

合成锂皂石型Li[MgLi]SiOF中的快速低维锂离子跳跃过程

Rapid Low-Dimensional Li Ion Hopping Processes in Synthetic Hectorite-Type Li[MgLi]SiOF.

作者信息

Hiebl Caroline, Loch Patrick, Brinek Marina, Gombotz Maria, Gadermaier Bernhard, Heitjans Paul, Breu Josef, Wilkening H Martin R

机构信息

Institute for Chemistry and Technology of Materials, and Christian Doppler Laboratory for Lithium Batteries, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria.

Department of Chemistry and Bavarian Center for Battery Technology, University of Bayreuth, Universitätsstraße 30, Bayreuth 95447, Germany.

出版信息

Chem Mater. 2020 Sep 8;32(17):7445-7457. doi: 10.1021/acs.chemmater.0c02460. Epub 2020 Aug 5.

Abstract

Understanding the origins of fast ion transport in solids is important to develop new ionic conductors for batteries and sensors. Nature offers a rich assortment of rather inspiring structures to elucidate these origins. In particular, layer-structured materials are prone to show facile Li transport along their inner surfaces. Here, synthetic hectorite-type Li[MgLi]SiOF, being a phyllosilicate, served as a model substance to investigate Li translational ion dynamics by both broadband conductivity spectroscopy and diffusion-induced Li nuclear magnetic resonance (NMR) spin-lattice relaxation experiments. It turned out that conductivity spectroscopy, electric modulus data, and NMR are indeed able to detect a rapid 2D Li exchange process governed by an activation energy as low as 0.35 eV. At room temperature, the bulk conductivity turned out to be in the order of 0.1 mS cm. Thus, the silicate represents a promising starting point for further improvements by crystal chemical engineering. To the best of our knowledge, such a high Li ionic conductivity has not been observed for any silicate yet.

摘要

了解固体中快速离子传输的起源对于开发用于电池和传感器的新型离子导体至关重要。自然界提供了丰富多样且相当鼓舞人心的结构来阐明这些起源。特别是,层状结构材料易于沿其内表面表现出便捷的锂传输。在此,合成锂皂石型Li[MgLi]SiOF作为一种层状硅酸盐,用作模型物质,通过宽带电导率光谱和扩散诱导锂核磁共振(NMR)自旋 - 晶格弛豫实验来研究锂平移离子动力学。结果表明,电导率光谱、介电模量数据和核磁共振确实能够检测到由低至0.35 eV的活化能控制的快速二维锂交换过程。在室温下,体电导率约为0.1 mS cm。因此,这种硅酸盐是通过晶体化学工程进一步改进的有前景的起点。据我们所知,尚未在任何硅酸盐中观察到如此高的锂离子电导率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d7fb/7499405/892d4930f428/cm0c02460_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验