Temmel Erik, Eicke Matthias J, Cascella Francesca, Seidel-Morgenstern Andreas, Lorenz Heike
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
Otto von Guericke University Magdeburg, Chair of Chemical Process Engineering, 39106 Magdeburg, Germany.
Cryst Growth Des. 2019 Jun 5;19(6):3148-3157. doi: 10.1021/acs.cgd.8b01660. Epub 2019 May 1.
Preferential crystallization is a cost efficient method to provide pure enantiomers from a racemic mixture of a conglomerate forming system. Exploiting small amounts of pure crystals of both enantiomers, several batch or continuous processes were developed, capable of providing both species. However, an intermediate production step has to be used when pure enantiomers are not available. In such cases, partially selective synthesis, chromatography, or crystallization processes utilizing chiral auxiliaries have to be used to provide the initial seed material. Recently, it was shown that a coupled Preferential Crystallization-selective Dissolution process (CPCD) in two coupled crystallizers can be applied if at least one pure enantiomer is available to produce both antipodes within one batch. The corresponding process is carried out in one reactor (crystallization tank) by seeding a racemic supersaturated solution with the available enantiomer at a certain temperature. The second reactor (dissolution tank) contains a saturated racemic suspension at a higher temperature. Both reactors are coupled via the fluid phase, allowing for a selective dissolution of the preferentially crystallizing enantiomer from the solid racemic feed provided in the dissolution vessel. The dissolution and crystallization processes continue until the solid racemic material is completely resolved and becomes enantiopure. At this point, both enantiomers can be harvested in their pure crystalline form. For a specific pharmaceutically relevant case study, a rational process design and the applied empirical optimization procedure will be described. The achieved productivities after optimization show the great potential of this approach also for industrial applications. Also, a strategy to control this process based on inline turbidity measurement will be presented.
优先结晶是一种从聚集体形成系统的外消旋混合物中提供纯对映体的经济高效方法。利用两种对映体的少量纯晶体,开发了几种间歇或连续工艺,能够提供这两种物质。然而,当没有纯对映体时,必须使用中间生产步骤。在这种情况下,必须使用部分选择性合成、色谱法或利用手性助剂的结晶工艺来提供初始晶种材料。最近研究表明,如果至少有一种纯对映体可用,在一个批次内生产两种对映体时,可以在两个耦合结晶器中应用耦合优先结晶-选择性溶解工艺(CPCD)。相应的工艺在一个反应器(结晶罐)中进行,在一定温度下用可用的对映体晶种接种外消旋过饱和溶液。第二个反应器(溶解罐)含有较高温度下的饱和外消旋悬浮液。两个反应器通过流体相耦合,使得优先结晶的对映体能够从溶解容器中提供的固体外消旋进料中选择性溶解。溶解和结晶过程持续进行,直到固体外消旋材料完全分解并变成对映体纯物质。此时,两种对映体都可以以纯晶体形式收获。对于一个特定的药物相关案例研究,将描述合理的工艺设计和应用的经验优化程序。优化后实现的生产率表明这种方法在工业应用中也具有巨大潜力。此外,还将提出一种基于在线浊度测量来控制该过程的策略。