Bhandari Shashank, Carneiro Thiane, Lorenz Heike, Seidel-Morgenstern Andreas
Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany.
Cryst Growth Des. 2022 Jul 6;22(7):4094-4104. doi: 10.1021/acs.cgd.1c01473. Epub 2022 Jun 6.
Kinetically controlled preferential crystallization (PC) is a well-established elegant concept to separate mixtures of enantiomers of conglomerate-forming systems. Based on a smaller number of laboratory investigations, the key parameters of an available shortcut model (SCM) can be estimated, allowing for a rapid and reliable process design. This paper addresses a severe limitation of the method, namely, the limitation of the yield to 50%. In order to exploit the valuable counter enantiomer, the crystallization process is studied, coupled with a racemization reaction and a recycling step. It will be shown that the process integration can be performed in various ways. To quantify the different options in a unified manner and to provide a more general design concept, the SCM of PC is extended to include a kinetic model for the enzymatically catalyzed reaction. For illustration, model parameters are used, which characterize the resolution of the enantiomers of asparagine monohydrate and the racemization rate using an amino acid racemase. The theoretical study highlights the importance of exploiting the best stop time for batch operations in order to achieve the highest process productivity.
动力学控制的优先结晶(PC)是一种成熟的精妙概念,用于分离形成聚集体体系的对映体混合物。基于较少的实验室研究,可以估算现有捷径模型(SCM)的关键参数,从而实现快速且可靠的工艺设计。本文探讨了该方法的一个严重局限性,即产率限制在50%。为了利用有价值的对映体,研究了结晶过程,并结合了消旋反应和循环步骤。结果表明,工艺集成可以通过多种方式进行。为了以统一的方式量化不同选项并提供更通用的设计概念,将PC的SCM扩展为包括酶催化反应的动力学模型。为了说明,使用了模型参数,这些参数表征了一水合天冬酰胺对映体的拆分以及使用氨基酸消旋酶的消旋速率。理论研究强调了为实现最高工艺生产率而利用间歇操作最佳停止时间的重要性。