Naylor Andrew J, Källquist Ida, Peralta David, Martin Jean-Frederic, Boulineau Adrien, Colin Jean-François, Baur Christian, Chable Johann, Fichtner Maximilian, Edström Kristina, Hahlin Maria, Brandell Daniel
Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden.
Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden.
ACS Appl Energy Mater. 2020 Jun 22;3(6):5937-5948. doi: 10.1021/acsaem.0c00839. Epub 2020 May 29.
Promising theoretical capacities and high voltages are offered by Li-rich disordered rocksalt oxyfluoride materials as cathodes in lithium-ion batteries. However, as has been discovered for many other Li-rich materials, the oxyfluorides suffer from extensive surface degradation, leading to severe capacity fading. In the case of LiVOF, we have previously determined this to be a result of detrimental reactions between an unstable surface layer and the organic electrolyte. Herein, we present the protection of LiVOF particles with AlF surface modification, resulting in a much-enhanced capacity retention over 50 cycles. While the specific capacity for the untreated material drops below 100 mA h g after only 50 cycles, the treated materials retain almost 200 mA h g. Photoelectron spectroscopy depth profiling confirms the stabilization of the active material surface by the surface modification and reveals its suppression of electrolyte decomposition.
富锂无序岩盐氧氟化物材料作为锂离子电池的阴极具有可观的理论容量和高电压。然而,正如许多其他富锂材料所发现的那样,氧氟化物会遭受广泛的表面降解,导致严重的容量衰减。就LiVOF而言,我们之前已确定这是由于不稳定表面层与有机电解质之间的有害反应所致。在此,我们展示了通过AlF表面改性对LiVOF颗粒的保护作用,从而在50次循环中实现了显著增强的容量保持率。未经处理的材料在仅50次循环后比容量就降至100 mA h g以下,而经过处理的材料则保留了近200 mA h g。光电子能谱深度剖析证实了表面改性使活性材料表面得以稳定,并揭示了其对电解质分解的抑制作用。