Cixi Institute of Biomedical Engineering, Chinese Academy of Science (CAS) Key Laboratory of Magnetic Materials and Devices & Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 ZhongGuan West Road, Ningbo, 315201, China.
University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China.
Small. 2020 Oct;16(41):e2002445. doi: 10.1002/smll.202002445. Epub 2020 Sep 20.
The quest for an all-organic nanosystem with negligible cytotoxicity and remarkable in vivo tumor theranostic capability is inescapably unending. Hitherto, the landscape of available photothermal agents is dominated by metal-based nanoparticles (NPs) with attendant in vivo negatives. Here, an all-organic-composed theranostic nanosystem with outstanding biocompatibility for fluorescence image-guided tumor photothermal therapy, and as a potential alternative to metal-based photothermal agents is developed. This is rationally achieved by compartmentalizing indocyanine green (ICG) in glycol chitosan (GC)-polypyrrole (PP) nanocarrier to form hybrid ICG@GC-PP NPs (≈65 nm). The compartmentalization strategy, alongside the high photothermal conversion ability of PP jointly enhances the low photostability of free ICG. Advantageously, ICG@GC-PP is endowed with an impeccable in vivo performance by the well-known biocompatibility track records of its individual tri organo-components (GC, PP, and ICG). As a proof of concept, ICG@GC-PP NPs enables a sufficiently prolonged tumor diagnosis by fluorescence imaging up to 20 h post-injection. Furthermore, owing to the complementary heating performances of PP and ICG, ICG@GC-PP NPs-treated mice by one-time near-infrared irradiation exhibit total tumor regression within 14 days post-treatment. Therefore, leveraging the underlying benefits of this study will help to guide the development of new all-organic biocompatible systems in synergism, for safer tumor theranostics.
寻找一种具有可忽略的细胞毒性和显著的体内肿瘤治疗效果的全有机纳米系统是永无止境的。迄今为止,可用的光热剂的范围主要由具有体内负面作用的基于金属的纳米颗粒 (NPs) 主导。在这里,开发了一种具有出色生物相容性的全有机组成的治疗纳米系统,用于荧光图像引导的肿瘤光热治疗,并作为金属基光热剂的潜在替代品。这是通过将吲哚菁绿 (ICG) 分隔在乙二醇壳聚糖 (GC)-聚吡咯 (PP) 纳米载体中形成混合 ICG@GC-PP NPs(≈65nm)来合理实现的。这种分隔策略以及 PP 的高光热转换能力共同增强了游离 ICG 的低光稳定性。有利的是,由于其三个有机成分(GC、PP 和 ICG)的众所周知的生物相容性记录,ICG@GC-PP 具有完美的体内性能。作为概念验证,ICG@GC-PP NPs 通过荧光成像能够在注射后 20 小时内进行足够长的肿瘤诊断。此外,由于 PP 和 ICG 的互补加热性能,通过一次近红外照射治疗的 ICG@GC-PP NPs 处理的小鼠在治疗后 14 天内实现了肿瘤的完全消退。因此,利用本研究的潜在优势将有助于指导新的全有机生物相容性系统的协同发展,以实现更安全的肿瘤治疗。