Khatami Mohammad Mahdi, Gaddemane Gautam, Van de Put Maarten L, Moravvej-Farshi Mohammad Kazem, Vandenberghe William G
Faculty of Electrical and Computer Engineering, PO Box 14115-194, Tarbiat Modares University, Tehran 1411713116, Iran.
J Phys Condens Matter. 2020 Sep 30;32(49):495502. doi: 10.1088/1361-648X/abb2f6.
Hydrogenation and fluorination have been presented as two possible methods to open a bandgap in graphene, required for field-effect transistor applications. In this work, we present a detailed study of the phonon-limited mobility of electrons and holes in hydrogenated graphene (graphane) and fluorinated graphene (graphene fluoride). We pay special attention to the out-of-plane acoustic (ZA) phonons, responsible for the highest scattering rates in graphane and graphene fluoride. Considering the most adverse cut-off for long-wavelength ZA phonons, we have obtained electron (hole) mobilities of 28 (41) cm V s for graphane and 96 (30) cm V s for graphene fluoride. Nonetheless, for a more favorable cut-off wavelength of ∼2.6 nm, significantly higher electron (hole) mobilities of 233 (389) cm V s for graphane and 460 (105) cm V s for graphene fluoride are achieved. Moreover, while complete suppression of ZA phonons can increase the electron (hole) mobility in graphane up to 278 (391) cm V s, it does not affect the carrier mobilities in graphene fluoride. Velocity-field characteristics reveal that the electron velocity in graphane saturates at an electric field of ∼4 × 10 V cm. Comparing the mobilities with other two-dimensional (2D) semiconductors, we find that hydrogenation and fluorination are two promising avenues to realize a 2D semiconductor while providing good carrier mobilities.
氢化和氟化已被提出作为在石墨烯中打开带隙的两种可能方法,这是场效应晶体管应用所必需的。在这项工作中,我们对氢化石墨烯(石墨烷)和氟化石墨烯(氟化石墨烯)中电子和空穴的声子限制迁移率进行了详细研究。我们特别关注面外声学(ZA)声子,它们在石墨烷和氟化石墨烯中具有最高的散射率。考虑到长波长ZA声子的最不利截止条件,我们得到石墨烷的电子(空穴)迁移率为28(41)cm² V⁻¹ s⁻¹,氟化石墨烯的电子(空穴)迁移率为96(30)cm² V⁻¹ s⁻¹。然而,对于约2.6 nm的更有利截止波长,石墨烷的电子(空穴)迁移率显著提高到233(389)cm² V⁻¹ s⁻¹,氟化石墨烯的电子(空穴)迁移率为460(105)cm² V⁻¹ s⁻¹。此外,虽然完全抑制ZA声子可以使石墨烷中的电子(空穴)迁移率提高到278(391)cm² V⁻¹ s⁻¹,但它不会影响氟化石墨烯中的载流子迁移率。速度-场特性表明,石墨烷中的电子速度在约4×10⁵ V cm⁻¹的电场下达到饱和。将迁移率与其他二维(2D)半导体进行比较,我们发现氢化和氟化是实现二维半导体同时提供良好载流子迁移率的两个有前景的途径。