MediZentrum Täuffelen, Täuffelen, Switzerland.
Nursing & Midwifery Research Unit, Inselspital Bern University Hospital, Bern, Switzerland.
J Med Internet Res. 2020 Sep 21;22(9):e19516. doi: 10.2196/19516.
Falls are common adverse events in hospitals, frequently leading to additional health costs due to prolonged stays and extra care. Therefore, reliable fall detection is vital to develop and test fall prevention strategies. However, conventional methods-voluntary incident reports and manual chart reviews-are error-prone and time consuming, respectively. Using a search algorithm to examine patients' electronic health record data and flag fall indicators offers an inexpensive, sensitive, cost-effective alternative.
This study's purpose was to develop a fall detection algorithm for use with electronic health record data, then to evaluate it alongside the Global Trigger Tool, incident reports, a manual chart review, and patient-reported falls.
Conducted on 2 campuses of a large hospital system in Switzerland, this retrospective diagnostic accuracy study consisted of 2 substudies: the first, targeting 240 patients, for algorithm development and the second, targeting 298 patients, for validation. In the development study, we compared the new algorithm's in-hospital fall rates with those indicated by the Global Trigger Tool and incident reports; in the validation study, we compared the algorithm's in-hospital fall rates with those from patient-reported falls and manual chart review. We compared the various methods by calculating sensitivity, specificity, and predictive values.
Twenty in-hospital falls were discovered in the development study sample. Of these, the algorithm detected 19 (sensitivity 95%), the Global Trigger Tool detected 18 (90%), and incident reports detected 14 (67%). Of the 15 falls found in the validation sample, the algorithm identified all 15 (100%), the manual chart review identified 14 (93%), and the patient-reported fall measure identified 5 (33%). Owing to relatively high numbers of false positives based on falls present on admission, the algorithm's positive predictive values were 50% (development sample) and 47% (validation sample). Instead of requiring 10 minutes per case for a full manual review or 20 minutes to apply the Global Trigger Tool, the algorithm requires only a few seconds, after which only the positive results (roughly 11% of the full case number) require review.
The newly developed electronic health record algorithm demonstrated very high sensitivity for fall detection. Applied in near real time, the algorithm can record in-hospital falls events effectively and help to develop and test fall prevention measures.
跌倒在医院中很常见,由于住院时间延长和额外护理,常导致额外的健康成本。因此,可靠的跌倒检测对于开发和测试跌倒预防策略至关重要。然而,传统方法-自愿事件报告和手动图表审查-分别存在错误倾向和耗时的问题。使用搜索算法检查患者的电子健康记录数据并标记跌倒指标提供了一种廉价、敏感、具有成本效益的替代方法。
本研究的目的是开发一种用于电子健康记录数据的跌倒检测算法,然后将其与全球触发工具、事件报告、手动图表审查和患者报告的跌倒进行评估。
这项在瑞士一家大型医院系统的 2 个院区进行的回顾性诊断准确性研究包括 2 个子研究:第 1 个子研究针对 240 名患者,用于算法开发,第 2 个子研究针对 298 名患者,用于验证。在开发研究中,我们比较了新算法的院内跌倒率与全球触发工具和事件报告所指示的跌倒率;在验证研究中,我们比较了算法的院内跌倒率与患者报告的跌倒和手动图表审查的跌倒率。我们通过计算敏感性、特异性和预测值来比较各种方法。
在开发研究样本中发现了 20 例院内跌倒。其中,算法检测到 19 例(敏感性 95%),全球触发工具检测到 18 例(90%),事件报告检测到 14 例(67%)。在验证样本中发现的 15 例跌倒中,算法识别了所有 15 例(100%),手动图表审查识别了 14 例(93%),患者报告的跌倒措施识别了 5 例(33%)。由于基于入院时存在的跌倒的假阳性数量相对较高,算法的阳性预测值为 50%(开发样本)和 47%(验证样本)。与完整手动审查每个病例需要 10 分钟或应用全球触发工具需要 20 分钟相比,算法仅需要几秒钟,之后只需要审查阳性结果(大约是完整病例数的 11%)。
新开发的电子健康记录算法对跌倒检测具有非常高的敏感性。实时应用时,该算法可以有效地记录院内跌倒事件,并有助于开发和测试跌倒预防措施。