Suppr超能文献

用于实现可靠上肢运动意图检测的弹性肌电图分类

Resilient EMG Classification to Enable Reliable Upper-Limb Movement Intent Detection.

作者信息

Cene Vinicius Horn, Balbinot Alexandre

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2507-2514. doi: 10.1109/TNSRE.2020.3024947. Epub 2020 Nov 6.

Abstract

Reliable control of assistive devices using surface electromyography (sEMG) remains an unsolved task due to the signal's stochastic behavior that prevents robust pattern recognition for real-time control. Non-representative samples lead to inherent class overlaps that generate classification ripples for which the most common alternatives rely on post-processing and sample discard methods that insert additional delays and often do not offer substantial improvements. In this paper, a resilient classification pipeline based on Extreme Learning Machines (ELM) was used to classify 17 different upper-limb movements through sEMG signals from a total of 99 trials derived from three different databases. The method was compared to a baseline ELM and a sample discarding (DISC) method and proved to generate more stable and consistent classifications. The average accuracy boost of ≈ 10% in all databases lead to average weighted accuracy rates higher as 53,4% for amputees and 89,0% for non-amputee volunteers. The results match or outperform related works even without sample discards.

摘要

由于表面肌电图(sEMG)信号的随机行为,妨碍了用于实时控制的稳健模式识别,因此使用表面肌电图可靠地控制辅助设备仍然是一项未解决的任务。非代表性样本会导致固有的类别重叠,从而产生分类波动,对此最常见的解决方法依赖于后处理和样本丢弃方法,这些方法会增加额外延迟,而且通常不会带来显著改进。在本文中,基于极限学习机(ELM)的弹性分类流程被用于通过来自三个不同数据库的总共99次试验的sEMG信号对17种不同的上肢运动进行分类。该方法与基线ELM和样本丢弃(DISC)方法进行了比较,结果证明能产生更稳定、更一致的分类。在所有数据库中平均准确率提高了约10%,使得截肢者的平均加权准确率高于53.4%,非截肢志愿者的平均加权准确率高于89.0%。即使不进行样本丢弃,结果也与相关研究相当或更优。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验