Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore, Singapore.
School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore.
Sci Rep. 2023 Mar 23;13(1):4730. doi: 10.1038/s41598-023-30716-7.
Decoding human action intention prior to motion onset with surface electromyograms (sEMG) is an emerging neuroengineering topic with interesting clinical applications such as intelligent control of powered prosthesis/exoskeleton devices. Despite extensive prior works in the related fields, it remains a technical challenge due to considerable variability of complex multi-muscle activation patterns in terms of volatile spatio-temporal characteristics. To address this issue, we first hypothesize that the inherent variability of the idle state immediately preceding the motion initiation needs to be addressed explicitly. We therefore design a hierarchical dynamic Bayesian learning network model that integrates an array of Gaussian mixture model - hidden Markov models (GMM-HMMs), where each GMM-HMM learns the multi-sEMG processes either during the idle state, or during the motion initiation phase of a particular motion task. To test the hypothesis and evaluate the new learning network, we design and build a upper-limb sEMG-joystick motion study system, and collect data from 11 healthy volunteers. The data collection protocol adapted from the psychomotor vigilance task includes repeated and randomized binary hand motion tasks (push or pull) starting from either of two designated idle states: relaxed (with minimal muscle tones), or prepared (with muscle tones). We run a series of cross-validation tests to examine the performance of the method in comparison with the conventional techniques. The results suggest that the idle state recognition favors the dynamic Bayesian model over a static classification model. The results also show a statistically significant improvement in motion prediction accuracy by the proposed method (93.83±6.41%) in comparison with the conventional GMM-HMM method (89.71±8.98%) that does not explicitly account for the idle state. Moreover, we examine the progress of prediction accuracy over the course of motion initiation and identify the important hidden states that warrant future research.
在运动开始前通过表面肌电图(sEMG)解码人类运动意图是一个新兴的神经工程学课题,具有有趣的临床应用,例如动力假肢/外骨骼设备的智能控制。尽管在相关领域有广泛的前期工作,但由于复杂的多肌肉激活模式在瞬态时空特征方面具有相当大的可变性,因此仍然是一个技术挑战。为了解决这个问题,我们首先假设需要明确解决运动启动前空闲状态的固有可变性。因此,我们设计了一个层次动态贝叶斯学习网络模型,该模型集成了一系列高斯混合模型-隐马尔可夫模型(GMM-HMM),其中每个 GMM-HMM 学习多 sEMG 过程,无论是在空闲状态期间,还是在特定运动任务的运动启动阶段期间。为了验证假设并评估新的学习网络,我们设计并构建了一个上肢 sEMG-操纵杆运动研究系统,并从 11 名健康志愿者中收集数据。从精神运动警觉任务中改编的数据收集协议包括重复和随机化的二进制手部运动任务(推或拉),起始于两个指定的空闲状态之一:放松(肌肉张力最小)或准备(肌肉张力)。我们进行了一系列交叉验证测试,以检查该方法与传统技术相比的性能。结果表明,空闲状态识别倾向于动态贝叶斯模型而不是静态分类模型。结果还表明,与传统的不明确考虑空闲状态的 GMM-HMM 方法(89.71±8.98%)相比,所提出的方法在运动预测准确性方面有显著提高(93.83±6.41%)。此外,我们检查了运动启动过程中预测准确性的进展,并确定了需要进一步研究的重要隐藏状态。