Smits Odile R, Mewes Jan-Michael, Jerabek Paul, Schwerdtfeger Peter
The New Zealand Institute for Advanced Study and the Institute for Natural and Mathematical Science, Massey University (Albany), 0632, Auckland, New Zealand.
Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany.
Angew Chem Int Ed Engl. 2020 Dec 21;59(52):23636-23640. doi: 10.1002/anie.202011976. Epub 2020 Oct 22.
Oganesson (Og) is the last entry into the Periodic Table completing the seventh period of elements and group 18 of the noble gases. Only five atoms of Og have been successfully produced in nuclear collision experiments, with an estimate half-life for Og of 0. ms. With such a short lifetime, chemical and physical properties inevitably have to come from accurate relativistic quantum theory. Here, we employ two complementary computational approaches, namely parallel tempering Monte-Carlo (PTMC) simulations and first-principles thermodynamic integration (TI), both calibrated against a highly accurate coupled-cluster reference to pin-down the melting and boiling points of this super-heavy element. In excellent agreement, these approaches show Og to be a solid at ambient conditions with a melting point of ≈325 K. In contrast, calculations in the nonrelativistic limit reveal a melting point for Og of 220 K, suggesting a gaseous state as expected for a typical noble gas element. Accordingly, relativistic effects shift the solid-to-liquid phase transition by about 100 K.
奥加涅森(Og)是元素周期表中完成第七周期元素和第18族稀有气体的最后一个元素。在核碰撞实验中仅成功产生了5个Og原子,估计Og的半衰期为0毫秒。由于寿命如此之短,其化学和物理性质不可避免地要来自精确的相对论量子理论。在此,我们采用两种互补的计算方法,即并行回火蒙特卡罗(PTMC)模拟和第一性原理热力学积分(TI),两者均根据高精度耦合簇参考进行校准,以确定这种超重元素的熔点和沸点。这些方法高度一致地表明,在环境条件下Og是固体,熔点约为325K。相比之下,非相对论极限下的计算表明Og的熔点为220K,这表明它处于气态,正如典型稀有气体元素所预期的那样。因此,相对论效应使固液相变温度偏移了约100K。