Suppr超能文献

大豆种质资源中抗大豆疫霉菌数量性状抗病性的基因组预测的测试方法和统计模型。

Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections.

机构信息

Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH, 43210, US.

Vegetable Crop Research Unit, USDA-ARS, Madison, WI, 53706, US.

出版信息

Theor Appl Genet. 2020 Dec;133(12):3441-3454. doi: 10.1007/s00122-020-03679-w. Epub 2020 Sep 22.

Abstract

Genomic prediction of quantitative resistance toward Phytophthora sojae indicated that genomic selection may increase breeding efficiency. Statistical model and marker set had minimal effect on genomic prediction with > 1000 markers. Quantitative disease resistance (QDR) toward Phytophthora sojae in soybean is a complex trait controlled by many small-effect loci throughout the genome. Along with the technical and rate-limiting challenges of phenotyping resistance to a root pathogen, the trait complexity can limit breeding efficiency. However, the application of genomic prediction to traits with complex genetic architecture, such as QDR toward P. sojae, is likely to improve breeding efficiency. We provide a novel example of genomic prediction by measuring QDR to P. sojae in two diverse panels of more than 450 plant introductions (PIs) that had previously been genotyped with the SoySNP50K chip. This research was completed in a collection of diverse germplasm and contributes to both an initial assessment of genomic prediction performance and characterization of the soybean germplasm collection. We tested six statistical models used for genomic prediction including Bayesian Ridge Regression; Bayesian LASSO; Bayes A, B, C; and reproducing kernel Hilbert spaces. We also tested how the number and distribution of SNPs included in genomic prediction altered predictive ability by varying the number of markers from less than 50 to more than 34,000 SNPs, including SNPs based on sequential sampling, random sampling, or selections from association analyses. Predictive ability was relatively independent of statistical model and marker distribution, with a diminishing return when more than 1000 SNPs were included in genomic prediction. This work estimated relative efficiency per breeding cycle between 0.57 and 0.83, which may improve the genetic gain for P. sojae QDR in soybean breeding programs.

摘要

大豆疫霉菌数量抗性的基因组预测表明,基因组选择可能会提高育种效率。统计模型和标记集对基因组预测的影响最小,标记数量超过 1000 个。大豆对大豆疫霉菌的数量抗性(QDR)是一种复杂的性状,由基因组中许多小效应基因控制。除了对根病原体抗性进行表型测定的技术和速率限制挑战外,性状的复杂性也会限制育种效率。然而,基因组预测在遗传结构复杂的性状(如对 P. sojae 的 QDR)中的应用,可能会提高育种效率。我们通过在先前使用 SoySNP50K 芯片进行基因分型的两个超过 450 个植物引种(PI)的多样化面板中测量对 P. sojae 的 QDR,提供了基因组预测的新实例。这项研究是在多样化的种质资源中完成的,既有助于对基因组预测性能的初步评估,也有助于对大豆种质资源的特征描述。我们测试了用于基因组预测的六种统计模型,包括贝叶斯岭回归;贝叶斯 LASSO;贝叶斯 A、B、C;和再生核希尔伯特空间。我们还通过从少于 50 个到超过 34000 个 SNP 中改变标记数量来测试包括基于顺序采样、随机采样或关联分析选择的 SNP 在内的基因组预测中包含的 SNP 数量和分布如何改变预测能力。预测能力相对独立于统计模型和标记分布,当基因组预测中包含超过 1000 个 SNP 时,回报递减。这项工作估计每个育种周期的相对效率在 0.57 到 0.83 之间,这可能会提高大豆疫霉菌 QDR 在大豆育种计划中的遗传增益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验