Suppr超能文献

用于通过非重复试验预测玉米测交杂种产量和水分的训练集设计

Training set designs for prediction of yield and moisture of maize test cross hybrids with unreplicated trials.

作者信息

Terraillon Jérôme, Roeber Frank K, Flachenecker Christian, Frisch Matthias

机构信息

Institute of Agronomy and Plant Breeding II, Justus Liebig University, Giessen, Germany.

Corteva AgriScience, Munchen, Germany.

出版信息

Front Plant Sci. 2023 Mar 6;14:1080087. doi: 10.3389/fpls.2023.1080087. eCollection 2023.

Abstract

Unreplicated field trials and genomic prediction are both used to enhance the efficiency in early selection stages of a hybrid maize breeding program. No results are available on the optimal experimental design when combining both approaches. Our objectives were to investigate the effect of the training set design on the accuracy of genomic prediction in unreplicated maize test crosses. We carried out a cross validation study on basis of an experimental data set consisting of 1436 hybrids evaluated for yield and moisture for which genotyping information of 461 SNP markers were available. Training set designs of different size, implementing within environment prediction, within year prediction, across year prediction, and combinations of data sources across years and environments were compared with respect to their prediction accuracy. Across year prediction did not reach prediction accuracies that are useful for genomic selection. Within year prediction across environments provided useful correlations between observed and predicted breeding values. The prediction accuracies did not improve when adding to the training set data from previous years. We conclude that using all data available from unreplicated tests of the current breeding cycle provides a good accuracy of predicting test crosses, whereas adding data from previous breeding cycles, in which the genotypes are less related to the tested material, has only limited value for increasing the prediction accuracy.

摘要

非重复田间试验和基因组预测都被用于提高杂交玉米育种计划早期选择阶段的效率。关于将这两种方法结合时的最优试验设计,目前尚无相关结果。我们的目标是研究训练集设计对非重复玉米测交中基因组预测准确性的影响。我们基于一个实验数据集进行了交叉验证研究,该数据集包含1436个杂交种,对其产量和含水量进行了评估,并且有461个单核苷酸多态性(SNP)标记的基因分型信息。比较了不同规模的训练集设计在环境内预测、年内预测、跨年预测以及跨年份和环境的数据源组合方面的预测准确性。跨年预测未达到对基因组选择有用的预测准确性。跨环境的年内预测在观察到的和预测的育种值之间提供了有用的相关性。当将前几年的数据添加到训练集中时,预测准确性并未提高。我们得出结论,使用当前育种周期非重复试验的所有可用数据能够很好地预测测交,而添加前育种周期中基因型与测试材料相关性较低的数据,对提高预测准确性的价值有限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0480/10025381/3c4f44735749/fpls-14-1080087-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验