Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.
Shanghai Key Laboratory of Orthopaedic Implant, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
J Cell Physiol. 2021 Apr;236(4):2800-2816. doi: 10.1002/jcp.30045. Epub 2020 Sep 23.
The tumor necrosis factor (TNF)-like core domain of receptor activator of nuclear factor-κB ligand (RANKL) is a functional domain critical for osteoclast differentiation. One of the missense mutations identified in patients with osteoclast-poor autosomal recessive osteopetrosis (ARO) is located in residue methionine 199 that is replaced with lysine (M199K) amid the TNF-like core domain. However, the structure-function relationship of this mutation is not clear. Sequence-based alignment revealed that the fragment containing human M199 is highly conserved and equivalent to M200 in rat. Using site-directed mutagenesis, we generated three recombinant RANKL mutants M200K/A/E (M200s) by replacing the methionine 200 with lysine (M200K), alanine (M200A), and glutamic acid (M200E), representative of distinct physical properties. TRAcP staining and bone pit assay showed that M200s failed to support osteoclast formation and bone resorption, accompanied by impaired osteoclast-related signal transduction. However, no antagonistic effect was found in M200s against wild-type rat RANKL. Analysis of the crystal structure of RANKL predicted that this methionine residue is located within the hydrophobic core of the protein, thus, likely to be crucial for protein folding and stability. Consistently, differential scanning fluorimetry analysis suggested that M200s were less stable. Western blot analysis analyses further revealed impaired RANKL trimerization by M200s. Furthermore, receptor-ligand binding assay displayed interrupted interaction of M200s to its intrinsic receptors. Collectively, our studies revealed the molecular basis of human M199-induced ARO and elucidated the indispensable role of rodent residue M200 (equivalent to human M199) for the RANKL function.
肿瘤坏死因子(TNF)样核心结构域的核因子-κB 配体(RANKL)受体激活剂是破骨细胞分化的关键功能域。在破骨细胞缺乏的常染色体隐性骨硬化症(ARO)患者中鉴定出的错义突变之一位于 TNF 样核心结构域中的蛋氨酸 199 位,被赖氨酸(M199K)取代。然而,这种突变的结构-功能关系尚不清楚。基于序列的比对显示,包含人 M199 的片段高度保守,与人 M199 相当。使用定点突变,我们通过将蛋氨酸 200 替换为赖氨酸(M200K)、丙氨酸(M200A)和谷氨酸(M200E),生成了三个重组 RANKL 突变体 M200K/A/E(M200s),这分别代表了不同的物理性质。TRACP 染色和骨陷窝测定显示,M200s 不能支持破骨细胞的形成和骨吸收,并伴有破骨细胞相关信号转导受损。然而,在 M200s 中没有发现对野生型大鼠 RANKL 的拮抗作用。对 RANKL 晶体结构的分析表明,该蛋氨酸残基位于蛋白质的疏水核心内,因此可能对蛋白质折叠和稳定性至关重要。一致地,差示扫描荧光法分析表明,M200s 的稳定性较低。Western blot 分析进一步揭示了 M200s 对 RANKL 三聚体化的损伤。此外,受体-配体结合测定显示 M200s 与固有受体的相互作用中断。总之,我们的研究揭示了人 M199 诱导的 ARO 的分子基础,并阐明了啮齿动物残基 M200(相当于人 M199)对 RANKL 功能的不可或缺作用。