Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, United States.
Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London W12 OBZ, United Kingdom.
J Am Chem Soc. 2020 Oct 14;142(41):17457-17468. doi: 10.1021/jacs.0c06811. Epub 2020 Oct 5.
Chemo-optogenetics has produced powerful tools for optical control of cell activity, but current tools suffer from a variety of limitations including low unitary conductance, the need to modify the target channel, or the inability to control both on and off switching. Using a zebrafish behavior-based screening strategy, we discovered "TRPswitch", a photoswitchable nonelectrophilic ligand scaffold for the transient receptor potential ankyrin 1 (TRPA1) channel. TRPA1 exhibits high unitary channel conductance, making it an ideal target for chemo-optogenetic tool development. Key molecular determinants for the activity of TRPswitch were elucidated and allowed for replacement of the TRPswitch azobenzene with a next-generation azoheteroarene. The TRPswitch compounds enable reversible, repeatable, and nearly quantitative light-induced activation and deactivation of the vertebrate TRPA1 channel with violet and green light, respectively. The utility of TRPswitch compounds was demonstrated in larval zebrafish hearts exogenously expressing zebrafish Trpa1b, where the heartbeat could be controlled using TRPswitch and light. Therefore, TRPA1/TRPswitch represents a novel step-function chemo-optogenetic system with a unique combination of high conductance, high efficiency, activity against an unmodified vertebrate channel, and capacity for bidirectional optical switching. This chemo-optogenetic system will be particularly applicable in systems where a large depolarization current is needed or sustained channel activation is desirable.
化学光学遗传学为细胞活性的光学控制提供了强大的工具,但目前的工具存在多种限制,包括低单位电导、需要修饰目标通道或无法控制开启和关闭切换。我们使用基于斑马鱼行为的筛选策略,发现了一种可光开关的非亲电子配体支架,用于瞬时受体电位锚蛋白 1(TRPA1)通道,称为“TRPswitch”。TRPA1 具有高单位通道电导,使其成为化学光学遗传学工具开发的理想目标。阐明了 TRPswitch 活性的关键分子决定因素,并允许用下一代偶氮杂芳环取代 TRPswitch 的偶氮苯。TRPswitch 化合物能够分别用紫光和绿光可逆、可重复且几乎定量地光诱导激活和失活脊椎动物 TRPA1 通道。TRPswitch 化合物在体外表达斑马鱼 Trpa1b 的斑马鱼幼虫心脏中的应用证明了其有效性,其中可以使用 TRPswitch 和光来控制心跳。因此,TRPA1/TRPswitch 代表了一种新型阶跃功能化学光学遗传学系统,具有高电导、高效率、针对未经修饰的脊椎动物通道的活性以及双向光学切换的能力等独特组合。这种化学光学遗传学系统将特别适用于需要大去极化电流或需要持续通道激活的系统。