Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
Engineering Research Centre of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, P. R. China.
J Mater Chem B. 2020 Oct 21;8(40):9314-9324. doi: 10.1039/d0tb01412e.
The high surface elastic modulus of the titanium (Ti) implant is one of the critical factors causing poor osteointegration between the implant surface and surrounding bone tissue. To address this challenge, spherical silica nanoparticles (SSNs) and spherical titania nanoparticles (STNs) with different sizes were synthesized and embedded into Ti surfaces via a micro-arc oxidation (MAO) technique. There were no significant changes in the surface roughness and protein adsorption behaviors before and after the embedding of spherical silica nanoparticles and titania nanoparticles into the Ti implant. However, the surface elastic modulus of Ti-SSNs decreased from 93 GPa to 6.7 GPa, while there was still no change in surface elastic modulus between Ti and Ti-STN groups. In vitro experiments showed that Ti-SSNs, especially Ti-SSN3, significantly stimulated the expression level and nuclear localization of the transcription factor YAP. YAP/TAZ could further inhibit the phosphorylation of AKT and mTOR proteins in MSCs, leading to higher LC3-II protein expression and osteogenic differentiation of MSCs. Ti-SSNs also showed a higher level of autophagosome formation, ALP activity and mineralization capability compared to the other groups. Our results showed that the surface elasticity modulus of an implant plays an important role in the regulation of MSC behaviors. Therefore, designing an implant with an optimal elastic modulus at the surface might have great clinical potential in the bone repair field.
钛(Ti)种植体的高表面弹性模量是导致种植体表面与周围骨组织之间骨整合不良的关键因素之一。为了解决这一挑战,通过微弧氧化(MAO)技术合成了具有不同尺寸的球形二氧化硅纳米颗粒(SSNs)和球形二氧化钛纳米颗粒(STNs),并将其嵌入 Ti 表面。在将球形二氧化硅纳米颗粒和二氧化钛纳米颗粒嵌入 Ti 植入物前后,表面粗糙度和蛋白质吸附行为没有明显变化。然而,Ti-SSNs 的表面弹性模量从 93GPa 降低到 6.7GPa,而 Ti 和 Ti-STN 组之间的表面弹性模量仍没有变化。体外实验表明,Ti-SSNs,特别是 Ti-SSN3,可显著刺激转录因子 YAP 的表达水平和核定位。YAP/TAZ 可进一步抑制 MSCs 中 AKT 和 mTOR 蛋白的磷酸化,导致 LC3-II 蛋白表达和 MSCs 的成骨分化增加。Ti-SSNs 还显示出比其他组更高的自噬体形成、ALP 活性和矿化能力。我们的结果表明,种植体表面的弹性模量在调节 MSC 行为方面起着重要作用。因此,设计具有最佳表面弹性模量的植入物在骨修复领域可能具有巨大的临床潜力。