Suppr超能文献

生物医用镁合金植入物的复合纳米涂层:优势、机制和设计策略。

Composite Nanocoatings of Biomedical Magnesium Alloy Implants: Advantages, Mechanisms, and Design Strategies.

机构信息

Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.

出版信息

Adv Sci (Weinh). 2023 Jun;10(18):e2300658. doi: 10.1002/advs.202300658. Epub 2023 Apr 25.

Abstract

The rapid degradation of magnesium (Mg) alloy implants erodes mechanical performance and interfacial bioactivity, thereby limiting their clinical utility. Surface modification is among the solutions to improve corrosion resistance and bioefficacy of Mg alloys. Novel composite coatings that incorporate nanostructures create new opportunities for their expanded use. Particle size dominance and impermeability may increase corrosion resistance and thereby prolong implant service time. Nanoparticles with specific biological effects may be released into the peri-implant microenvironment during the degradation of coatings to promote healing. Composite nanocoatings provide nanoscale surfaces to promote cell adhesion and proliferation. Nanoparticles may activate cellular signaling pathways, while those with porous or core-shell structures may carry antibacterial or immunomodulatory drugs. Composite nanocoatings may promote vascular reendothelialization and osteogenesis, attenuate inflammation, and inhibit bacterial growth, thus increasing their applicability in complex clinical microenvironments such as those of atherosclerosis and open fractures. This review combines the physicochemical properties and biological efficiency of Mg-based alloy biomedical implants to summarize the advantages of composite nanocoatings, analyzes their mechanisms of action, and proposes design and construction strategies, with the purpose of providing a reference for promoting the clinical application of Mg alloy implants and to further the design of nanocoatings.

摘要

镁(Mg)合金植入物的快速降解会侵蚀机械性能和界面生物活性,从而限制其临床应用。表面改性是提高镁合金耐腐蚀性和生物功效的解决方案之一。新型复合涂层结合纳米结构为其更广泛的应用创造了新的机会。颗粒尺寸优势和不渗透性可能会提高耐腐蚀性,从而延长植入物的使用寿命。在涂层降解过程中,具有特定生物学效应的纳米颗粒可能会释放到植入物周围的微环境中,以促进愈合。复合纳米涂层提供纳米级表面以促进细胞黏附和增殖。纳米颗粒可能会激活细胞信号通路,而那些具有多孔或核壳结构的纳米颗粒可能会携带抗菌或免疫调节药物。复合纳米涂层可促进血管再内皮化和成骨作用,减轻炎症并抑制细菌生长,从而提高其在复杂临床微环境(如动脉粥样硬化和开放性骨折)中的适用性。本综述结合了基于镁的合金生物医学植入物的物理化学性质和生物学效率,总结了复合纳米涂层的优势,分析了它们的作用机制,并提出了设计和构建策略,旨在为促进镁合金植入物的临床应用和纳米涂层的设计提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c2a/10288271/62342a9f8ce4/ADVS-10-2300658-g010.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验